Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi Jan 2024

Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi

Graduate Theses, Dissertations, and Problem Reports

Phosphodiesterase-6 (PDE6) serves as a pivotal component in the phototransduction pathways of both cone and rod photoreceptors. In cones, PDE6 consists of tetrameric subunits: inhibitory (γ') and catalytic (α'). The catalytic subunit, PDE6α', contains a C-terminal prenylation motif. Deletion of this motif is associated with achromatopsia (ACHM), a form of color blindness. The mechanisms underlying the disease and the roles of PDE6 lipidation in vision remain elusive. Meanwhile, rod PDE6 is composed of α and β catalytic subunits and γ inhibitory subunits, with alterations in the C-terminal "prenylation motif" of PDE6β linked to retinitis pigmentosa (RP) pathology. In this comprehensive …


The Function Of Protein Glutamylation In Vision, Rawaa Aljammal Jan 2024

The Function Of Protein Glutamylation In Vision, Rawaa Aljammal

Graduate Theses, Dissertations, and Problem Reports

Posttranslational glutamylation of protein has emerged as a novel candidate for cellular integrity. In a dynamic process, Tubulin Tyrosine Ligase Like proteins (TTLLs) introduce glutamate groups to their substrates, while Cytosolic Carboxypeptidases members (CCP1-CCP6) remove these glutamate groups. The outcome of this interplay is a wide range of substrates; each is glutamylated to a level crucial for its function.

Protein glutamylation is particularly abundant in neurons and in the axoneme of cilia and flagella. This distribution, along with the correlation between imbalanced glutamylation levels and compromised cellular functions, underscores the significance of protein glutamylation in maintaining cellular viability. However, the …


Diversification Of Ergot Alkaloid Biosynthesis In Natural And Engineered Fungi, Kyle Austin Davis Jan 2023

Diversification Of Ergot Alkaloid Biosynthesis In Natural And Engineered Fungi, Kyle Austin Davis

Graduate Theses, Dissertations, and Problem Reports

Ergot alkaloids are a complex family of tryptophan-derived mycotoxins produced by a diverse range of fungi that occupy a wide variety of ecological niches including soil saprotrophs, plant endophytes, pathogens of plants or insects, and opportunistic pathogens of humans and other mammals. Ergot alkaloids are a similarly diverse family of chemicals that elicit a variety of pharmacological activities in animals due to their resemblance to neurotransmitters and high binding affinity for neurological receptors, including those that bind adrenaline, dopamine, and 5-hydroxytryptamine receptors. These structural similarities allow us to create medicines aimed at treating a range of neurological diseases and disorders …


Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian Jan 2023

Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian

Graduate Theses, Dissertations, and Problem Reports

Specialized metabolites produced by fungi impact human health. A large portion of the pharmaceuticals currently on the market are derived from metabolites biosynthesized by microbes. Ergot alkaloids are a class of fungal metabolites that are important in the interactions of environmental fungi with insects and mammals and also are used in the production of pharmaceuticals. In animals, ergot alkaloids can act as partial agonists or antagonists at receptors for 5-hydroxytryptamine (serotonin), dopamine, and noradrenaline as ergot alkaloids have chemical structures similar to those neurotransmitters. Therefore, they affect insects and mammals that consume them and can be used to produce drugs …


Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii Jan 2023

Cell Signaling And Stress Response In The Yeast Saccharomyces Cerevisiae: A Study Of Snf1, Scott E. Arbet Ii

Graduate Theses, Dissertations, and Problem Reports

Saccharomyces cerevisiae are yeast that are unicellular eukaryotic organisms that are well studied as a model organism for understanding fundamental cellular processes. The ability of yeast to sense nutrient availability is crucial for their survival, growth, and reproduction. Yeast cells use various mechanisms to sense and respond to nutrient availability, including transporter-mediated uptake, receptor-mediated signaling, and sensing of metabolites. The subcellular localization of nutrient-sensing components is crucial for yeast function in nutrient sensing and signaling. Protein complexes, such as the AMP-activated protein kinase (AMPK) pathway, in nutrient sensing and response, as well as the downstream effects of these pathways …


An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson Jan 2022

An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson

Graduate Theses, Dissertations, and Problem Reports

Aging is an inevitable process that occurs as humans grow older. It is characterized by the chronological accumulation of cellular damage over time leading to functional decline as an organism grows older. Several processes are thought to contribute to the aging phenomenon, but one of the most prolific of these is the disruption of protein homeostasis (proteostasis). The collapse of proteostasis can lead to accelerated aging and the development of age-related diseases including devastating neurodegenerative diseases (NDs) like Alzheimer and Parkinson disease. Virtually all NDs are characterized by the buildup of proteins in and around neurons resulting in neuronal death …


The Musashi Rna Binding Proteins Are Regulators Of Alternative Splicing And Protein Expression In Photoreceptor Cells, Fatimah Kh. Matalkah Jan 2022

The Musashi Rna Binding Proteins Are Regulators Of Alternative Splicing And Protein Expression In Photoreceptor Cells, Fatimah Kh. Matalkah

Graduate Theses, Dissertations, and Problem Reports

The Musashi (Msi) family of RNA binding proteins consists of two paralogs, Msi1 and Msi2, that are highly conserved across species. The two paralogs have emerged as factors that promote stem cell proliferation by post-transcriptionally regulating translation. In addition to their expression in stem cells, the Musashi proteins are also expressed in postmitotic neurons, including the photoreceptor cells. The Musashi proteins have been observed to maintain high expression levels in the postmitotic photoreceptors within the eye of both invertebrates and vertebrates. These observations suggest an additional role in the maintenance of terminally differentiated neurons.

Building upon these observations, we investigated …


Elucidating The Proteasomal Regulatory Mechanism Of Proteasome Activator Pa28Γ /Regγ, Taylor Ann Thomas Jan 2022

Elucidating The Proteasomal Regulatory Mechanism Of Proteasome Activator Pa28Γ /Regγ, Taylor Ann Thomas

Graduate Theses, Dissertations, and Problem Reports

Virtually all cellular processes are precisely regulated by the proteasome which is the primary enzyme responsible for the degradation of misfolded, damaged, or no longer necessary soluble proteins. To prevent any untimely degradation of these target protein substrates and protect the cell, the proteasome is tightly regulated via adaptor proteins, known as proteasomal regulators. There are many classes of proteasomal regulators each with their own unique structures, functions, and effects on protein degradation through the proteasome. One such class is the 11S family of proteasomal regulators which are also referred to as PA26/28, or REG. The 11S family are ATP-independent …


Transitions Between The Steps Of Group Iic Intron Forward And Reverse Splicing And Integration Into Dna, Claire Mae Smathers Jan 2022

Transitions Between The Steps Of Group Iic Intron Forward And Reverse Splicing And Integration Into Dna, Claire Mae Smathers

Graduate Theses, Dissertations, and Problem Reports

Group II introns are ancient ribozymes capable of self-excision and mobility into new genomic locations. As the ancestors of both the eukaryotic spliceosome and eukaryotic retroelements, these simple RNA machines serve as excellent models for understanding the mechanisms of both gene splicing and retroelement activity in eukaryotes. Although group II introns have been studied for decades, knowledge of the most unique and arguably evolutionarily relevant class of group II introns, IIC, is limited. Our knowledge is especially limited in terms of understanding how IIC introns mediate the transition between the two transesterification steps of forward splicing and reverse splicing into …


Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith Jan 2022

Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith

Graduate Theses, Dissertations, and Problem Reports

Plants are some of the most diverse organisms on earth, consisting of more than 350,000 different species. To understand the underlying processes that contributed to plant diversification, it is fundamental to identify the genetic and genomic components that facilitated various adaptations over evolutionary history. Most studies to date have focused on the underlying controls of above-ground traits such as grain and vegetation; however, little is known about the “hidden half” of plants. Root systems comprise half of the total plant structure and provide vital functions such as anchorage, resource acquisition, and storage of energy reserves. The execution of these key …


Amelioration Of Mitochondrial Bioenergetic Dysfunction In Diabetes Mellitus: Delving Into Specialized And Non-Specific Therapeutics For The Ailing Heart, Andrya Jean Durr Jan 2022

Amelioration Of Mitochondrial Bioenergetic Dysfunction In Diabetes Mellitus: Delving Into Specialized And Non-Specific Therapeutics For The Ailing Heart, Andrya Jean Durr

Graduate Theses, Dissertations, and Problem Reports

Morbidity and mortality of the diabetic population is influenced by many confounding factors, but cardiovascular disease (CVD), remains the leading cause of death. Mitochondrial dysfunction is central in the development of cardiac contractile dysfunction, with decreased mitochondrial bioenergetic function, increased dependence on free fatty acid utilization, and a decrease in glucose utilization having been shown to contribute to contractile dysfunction. Strategies targeting the amelioration of mitochondrial bioenergetic function are attractive for limiting diabetes-induced heart failure, and preserving health-span. The goals of this dissertation were to assess two mitochondrial-centric approaches for the amelioration of mitochondrial and cardiac contractile dysfunction in diabetes …


Initial And Advanced Stages Of Microbiota Establishment Within The Tsetse Fly, Miguel Eduardo Medina Munoz Jan 2021

Initial And Advanced Stages Of Microbiota Establishment Within The Tsetse Fly, Miguel Eduardo Medina Munoz

Graduate Theses, Dissertations, and Problem Reports

Symbiosis is a long-term physical association between two or more species, although little is known regarding its evolutionary origins, particularly at the genetic level. Tsetse flies are the vector of African trypanosomes, causative agents of Human and Animal African Trypanosomiases. Tsetse provide an ideal model for studying initial and advanced stages of symbiosis. Tsetse have a simple digestive tract microbiota primarily consisting of two bacteria; the ancient mutualist Wigglesworthia glossinidia and the recently acquired Sodalis glossinidius. This work presents a chronological study in evolutionary terms of the history of a microbial-insect association. First, I present concepts on symbiosis and …


From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest Jan 2021

From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest

Graduate Theses, Dissertations, and Problem Reports

Photoreceptors are specialized neuroepithelial cells which are optimized for efficient capture of light and initiation of visual transduction. These cells have several compartments which are very important for proper visual function and segregation of cellular processes, including the outer segment (OS), inner segment (IS), nucleus, and synapse. The IS houses all of the cellular organelles and biosynthetic molecular machinery the cell requires and is the site of protein synthesis. The light-sensing OS is a highly modified, primary cilium, which contains many stacks of double membranous discs which house proteins required for formation and maintenance of OS structure, as well as …


The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore Jan 2021

The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore

Graduate Theses, Dissertations, and Problem Reports

Neuromodulation is a nearly ubiquitous process that endows the nervous system with the capacity to alter neural function at every level (synaptic, circuit, network, etc.) without necessarily adding new neurons. Through the actions of neuromodulators, the existing neural circuitry can be adaptively tuned to achieve flexible network output and similarly dynamic behavioral output. However, despite their near ubiquity in all sensory modalities, the mechanisms underlying neuromodulation of sensory processing remain poorly understood. In this dissertation, I address three main questions regarding the mechanisms of one modulator (serotonin) within one sensory modality (olfaction). I begin by establishing a "functional atlas" of …


Understanding The Relationship Between Local Environmental Changes And The Function Of The Ph Low Insertion Peptide, Violetta Burns Casamayor Jan 2021

Understanding The Relationship Between Local Environmental Changes And The Function Of The Ph Low Insertion Peptide, Violetta Burns Casamayor

Graduate Theses, Dissertations, and Problem Reports

Cancer is the second leading cause of death in the US with over 1.7 million new cases each year. Current cancer treatments tend to also target healthy tissues due to similarities with cancerous ones, resulting in acute side effects. Early detection is the best approach towards defeating cancer, however, modern imaging techniques require sizeable samples, often implying a late stage in the disease. One common attribute of tumors is their acidic microenvironment, which can be taken advantage of.

The pH Low Insertion Peptide (pHLIP) is a membrane-active peptide that can take advantage of the acidic microenvironment surrounding cancer cells. pHLIP …


The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd Jan 2020

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd

Graduate Theses, Dissertations, and Problem Reports

Nanotechnology takes advantage of cellular biology’s natural nanoscale operations by interacting with biomolecules differently than soluble or bulk materials, often altering normal cellular processes such as metabolism or growth. To gain a better understanding of how copper nanoparticles hybridized on cellulose fibers called carboxymethyl cellulose (CMC) affected growth of Saccharomyces cerevisiae, the mechanisms of toxicity were explored. Multiple methodologies covering genetics, proteomics, metallomics, and metabolomics were used during this investigation. The work that lead to this dissertation discovered that these cellulosic copper nanoparticles had a unique toxicity compared to copper. Further investigation suggested a possible ionic or molecular mimicry …


Role Of Ciliary Proteins Adp Ribosylation Factor Like Gtpase 13b (Arl13b) And Bardet-Biedl Syndrome-8 (Bbs8) In Photoreceptor Outer Segment Morphogenesis, Maintenance, And Viability, Tanya L. Dilan Jan 2020

Role Of Ciliary Proteins Adp Ribosylation Factor Like Gtpase 13b (Arl13b) And Bardet-Biedl Syndrome-8 (Bbs8) In Photoreceptor Outer Segment Morphogenesis, Maintenance, And Viability, Tanya L. Dilan

Graduate Theses, Dissertations, and Problem Reports

Photoreceptor neurons are modified primary cilia with an extended ciliary compartment known as the outer segment (OS). The mechanisms behind the elaboration of photoreceptor cilia, OS morphogenesis, and maintenance remain poorly understood. In this work, we focused on dissecting the role of two ciliary proteins, the small GTPase ADP-ribosylation factor-like GTPase 13B (ARL13B) and Bardet-Biedl Syndrome-8 (BBS8) in the context of photoreceptor biology. Both BBS8 and ARL13B are linked to defects in ciliogenesis (cilia development) and Retinitis Pigmentosa (vision loss). ARL13B is implicated in regulating ciliary length, and BBS8 is part of the Bardet-Biedl Syndrome complex (BBSome); the BBSome is …


Estimating The Age Of A Bloodstain Using Droplet Digital Pcr, Kalee Rae Crampton Jan 2019

Estimating The Age Of A Bloodstain Using Droplet Digital Pcr, Kalee Rae Crampton

Graduate Theses, Dissertations, and Problem Reports

Biological evidence is extremely valuable in the investigation of a crime due to the presence of DNA. DNA evidence is considered the gold standard in court cases due to its ability to link a suspect to a piece of evidence. In addition to DNA evidence, biological stains have the potential to provide a temporal link between an individual and a crime scene. Previous studies have shown that relative rates of RNA degradation can be used in order to estimate the age of bloodstains. Here, we examined the ability of droplet digital PCR to be used in place of quantitative PCR …


The Evaluation Of The Rapidhittm 200 On Degraded Biological Samples, Alice Kim Jan 2019

The Evaluation Of The Rapidhittm 200 On Degraded Biological Samples, Alice Kim

Graduate Theses, Dissertations, and Problem Reports

DNA (deoxyribonucleic acid) has become an integral part of forensic science in the last couple of decades since its discovery to this application by Alec Jeffreys. Although there have been many advances throughout the years, the time it takes to obtain a DNA profile using conventional methods in a laboratory setting is approximately 24 to 72 hours. Due to this length of time and the increase in demand for DNA testing, it has caused a tremendous amount of backlog throughout the country. In 2009, the FBI (Federal Bureau of Investigation) in collaboration with the US Department of Defense of Homeland …


Regulation Of The Long Non-Coding Rna Fam83h-As1 By Human Papillomavirus In Cervical Cancer, Jamie Ann Barr Ph.D. Jan 2019

Regulation Of The Long Non-Coding Rna Fam83h-As1 By Human Papillomavirus In Cervical Cancer, Jamie Ann Barr Ph.D.

Graduate Theses, Dissertations, and Problem Reports

Non-coding RNAs (NcRNAs), such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been found to be involved in a variety of critical biological processes, and dysregulation of ncRNAs have been involved with several human diseases including cancer.

High-risk human papillomavirus (HPV) infection is one of the first events in the process of carcinogenesis in cervical and a subset of head and neck cancers. The expression of the viral oncoproteins E6 and E7 is essential in this process by inactivating the tumor suppressor proteins p53 and Rb, respectively, in addition to their interactions with other host proteins and regulation of …