Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Characterizing The Role Of Pa5189 Of Pseudomonas Aeruginosa In Deletion And Overexpression Mutants, Seh Na Mellick May 2024

Characterizing The Role Of Pa5189 Of Pseudomonas Aeruginosa In Deletion And Overexpression Mutants, Seh Na Mellick

Theses/Capstones/Creative Projects

In the context of rising multidrug resistance in biofilm-forming pathogens like Pseudomonas aeruginosa, this study investigates the role of the understudied transcription factor PA5189 in antibiotic resistance and biofilm formation. PA5189 deletion and overexpression mutants were created in a parent P. aeruginosa strain using pEX18Tc-based recombinant suicide vectors, with genotypic verification of putative triparental conjugants achieved through restriction digestion and PCR. The study revealed that PA5189 overexpression significantly increases resistance to commonly used broad spectrum antibiotics such as ciprofloxacin and imipenem. Additionally, differential expression of PA5189 was found to notably affect biofilm formation, with variations contingent on the nutrient …


The Role Of The Msaabcr Operon In Cell Wall Integrity And Programmed Cell Death During Biofilm Development, Bibek G C Aug 2021

The Role Of The Msaabcr Operon In Cell Wall Integrity And Programmed Cell Death During Biofilm Development, Bibek G C

Dissertations

Staphylococcus aureus is an important human pathogen in both community and health care settings. Biggest challenges with S. aureus as a pathogen is its ability to acquire antibiotic resistance and produce robust biofilms. In this work, we investigated the nature of the cell wall defect in the msaABCR operon mutant in the Mu50 (VISA) and USA300 LAC methicillin-resistant Staphylococcus aureus (MRSA) strains. Results showed that msaABCR-mutant cells had decreased cell wall thickness and cell wall crosslinking in both strains. These defects are most likely due to increased murein hydrolase activity and/or nonspecific processing of murein hydrolases mediated by increased …