Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Molecular Mechanism Of Action Of The Natural Polyphenolic Compound And The P300 Inhibitor “Carnosol” Against The Triple Negative Breast Cance, Halima Ali Mohammed Salem Alsamri Nov 2021

Molecular Mechanism Of Action Of The Natural Polyphenolic Compound And The P300 Inhibitor “Carnosol” Against The Triple Negative Breast Cance, Halima Ali Mohammed Salem Alsamri

Dissertations

Carnosol, a naturally occurring Phyto polyphenol found in sage, oregano, and rosemary, has been extensively studied by our laboratory for its anticancer effects in various types of cancer. In human Triple-Negative Breast Cancer (TNBC), carnosol was shown to inhibit cellular viability, colony growth, induced cell cycle arrest, autophagy, and apoptosis. Nonetheless, very little is known about the molecular mechanism of action. In the current study, the ability of carnosol to inhibit metastasis and tumour growth was examined. Wound healing and invasion assays revealed that carnosol inhibited migration and invasion at non-cytotoxic concentrations of MDA-MB-231 cells. Also, carnosol was found to …


A Screen Of Fda-Approved Drugs Identifies Inhibitors Of Protein Tyrosine Phosphatase 4a3 (Ptp4a3 Or Prl-3), Dylan R. Rivas, Mark Vincent C. Dela Cerna, Caroline N. Smith, Shilpa Sampathi, Blaine G. Patty, Donghan Lee, Jessica S. Blackburn May 2021

A Screen Of Fda-Approved Drugs Identifies Inhibitors Of Protein Tyrosine Phosphatase 4a3 (Ptp4a3 Or Prl-3), Dylan R. Rivas, Mark Vincent C. Dela Cerna, Caroline N. Smith, Shilpa Sampathi, Blaine G. Patty, Donghan Lee, Jessica S. Blackburn

Molecular and Cellular Biochemistry Faculty Publications

Protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3) is highly expressed in a variety of cancers, where it promotes tumor cell migration and metastasis leading to poor prognosis. Despite its clinical significance, small molecule inhibitors of PRL-3 are lacking. Here, we screened 1443 FDA-approved drugs for their ability to inhibit the activity of the PRL phosphatase family. We identified five specific inhibitors for PRL-3 as well as one selective inhibitor of PRL-2. Additionally, we found nine drugs that broadly and significantly suppressed PRL activity. Two of these broad-spectrum PRL inhibitors, Salirasib and Candesartan, blocked PRL-3-induced migration in human embryonic kidney cells …


The Context-Dependent Impact Of Integrin-Associated Cd151 And Other Tetraspanins On Cancer Development And Progression: A Class Of Versatile Mediators Of Cellular Function And Signaling, Tumorigenesis And Metastasis, Sonia F. Erfani, Hui Hua, Yueyin Pan, Binhua P. Zhou, Xiuwei H. Yang Apr 2021

The Context-Dependent Impact Of Integrin-Associated Cd151 And Other Tetraspanins On Cancer Development And Progression: A Class Of Versatile Mediators Of Cellular Function And Signaling, Tumorigenesis And Metastasis, Sonia F. Erfani, Hui Hua, Yueyin Pan, Binhua P. Zhou, Xiuwei H. Yang

Molecular and Cellular Biochemistry Faculty Publications

As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition …