Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich Dec 2021

Late-Life Exercise Mitigates Skeletal Muscle Epigenetic Aging, Kevin A. Murach, Andrea L. Dimet-Wiley, Yuan Wen, Camille R. Brightwell, Christine M. Latham, Cory M. Dungan, Christopher S. Fry, Stanley J. Watowich

Center for Muscle Biology Faculty Publications

There are functional benefits to exercise in muscle, even when performed late in life, but the contributions of epigenetic factors to late-life exercise adaptation are poorly defined. Using reduced representation bisulfite sequencing (RRBS), ribosomal DNA (rDNA) and mitochondrial-specific examination of methylation, targeted high-resolution methylation analysis, and DNAge™ epigenetic aging clock analysis with a translatable model of voluntary murine endurance/resistance exercise training (progressive weighted wheel running, PoWeR), we provide evidence that exercise may mitigate epigenetic aging in skeletal muscle. Late-life PoWeR from 22–24 months of age modestly but significantly attenuates an age-associated shift toward promoter hypermethylation. The epigenetic age of muscle …


Untargeted Lipidomics Of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes In Cancer Vs. Non-Cancer Tissue, Joshua M. Mitchell, Robert M. Flight, Hunter N. B. Moseley Oct 2021

Untargeted Lipidomics Of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes In Cancer Vs. Non-Cancer Tissue, Joshua M. Mitchell, Robert M. Flight, Hunter N. B. Moseley

Molecular and Cellular Biochemistry Faculty Publications

Lung cancer remains the leading cause of cancer death worldwide and non-small cell lung carcinoma (NSCLC) represents 85% of newly diagnosed lung cancers. In this study, we utilized our untargeted assignment tool Small Molecule Isotope Resolved Formula Enumerator (SMIRFE) and ultra-high-resolution Fourier transform mass spectrometry to examine lipid profile differences between paired cancerous and non-cancerous lung tissue samples from 86 patients with suspected stage I or IIA primary NSCLC. Correlation and co-occurrence analysis revealed significant lipid profile differences between cancer and non-cancer samples. Further analysis of machine-learned lipid categories for the differentially abundant molecular formulas identified a high abundance sterol, …


An Empirical Pipeline For Personalized Diagnosis Of Lafora Disease Mutations, M. Kathryn Brewer, Maria Machio-Castello, Rosa Viana, Jeremiah L. Wayne, Andrea Kuchtová, Zoe R. Simmons, Sarah Sternbach, Sheng Li, Maria Adelaida García-Gimeno, Jose M. Serratosa, Pascual Sanz, Craig W. Vander Kooi, Matthew S. Gentry Oct 2021

An Empirical Pipeline For Personalized Diagnosis Of Lafora Disease Mutations, M. Kathryn Brewer, Maria Machio-Castello, Rosa Viana, Jeremiah L. Wayne, Andrea Kuchtová, Zoe R. Simmons, Sarah Sternbach, Sheng Li, Maria Adelaida García-Gimeno, Jose M. Serratosa, Pascual Sanz, Craig W. Vander Kooi, Matthew S. Gentry

Molecular and Cellular Biochemistry Faculty Publications

Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical …


Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson Sep 2021

Apoε4 Lowers Energy Expenditure In Females And Impairs Glucose Oxidation By Increasing Flux Through Aerobic Glycolysis, Brandon C. Farmer, Holden C. Williams, Nicholas A. Devanney, Margaret A. Piron, Grant K. Nation, David J. Carter, Adeline E. Walsh, Rebika Khanal, Lyndsay E. A. Young, Jude C. Kluemper, Gabriela Hernandez, Elizabeth J. Allenger, Rachel Mooney, Lesley R. Golden, Cathryn T. Smith, J. Anthony Brandon, Vedant A. Gupta, Philip A. Kern, Matthew S. Gentry, Josh M. Morganti, Ramon C. Sun, Lance A. Johnson

Physiology Faculty Publications

BACKGROUND: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer's disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field.

METHODS: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4.

RESULTS: Single-cell …


Effect Of Clinical Isolate Or Cleavage Site Mutations In The Sars-Cov-2 Spike Protein On Protein Stability, Cleavage, And Cell-Cell Fusion, Chelsea T. Barrett, Hadley E. Neal, Kearstin Edmonds, Carole L. Moncman, Rachel Thompson, Jean M. Branttie, Kerri Beth Boggs, Cheng-Yu Wu, Daisy W. Leung, Rebecca E. Dutch Jun 2021

Effect Of Clinical Isolate Or Cleavage Site Mutations In The Sars-Cov-2 Spike Protein On Protein Stability, Cleavage, And Cell-Cell Fusion, Chelsea T. Barrett, Hadley E. Neal, Kearstin Edmonds, Carole L. Moncman, Rachel Thompson, Jean M. Branttie, Kerri Beth Boggs, Cheng-Yu Wu, Daisy W. Leung, Rebecca E. Dutch

Molecular and Cellular Biochemistry Faculty Publications

The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell-cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2-infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell-cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has …


Phenolic Compounds Of Red Wine Aglianico Del Vulture Modulate The Functional Activity Of Macrophages Via Inhibition Of Nf-Κb And The Citrate Pathway, Anna Santarsiero, Paolo Convertini, Antonio Vassallo, Valentina Santoro, Simona Todisco, Dominga Iacobazzi, Yvonne N. Fondufe-Mittendorf, Giuseppe Martelli, Marcos R. De Oliveira, Rosangela Montanaro, Vincenzo Brancaleone, Johannes Stöckl, Vittoria Infantino May 2021

Phenolic Compounds Of Red Wine Aglianico Del Vulture Modulate The Functional Activity Of Macrophages Via Inhibition Of Nf-Κb And The Citrate Pathway, Anna Santarsiero, Paolo Convertini, Antonio Vassallo, Valentina Santoro, Simona Todisco, Dominga Iacobazzi, Yvonne N. Fondufe-Mittendorf, Giuseppe Martelli, Marcos R. De Oliveira, Rosangela Montanaro, Vincenzo Brancaleone, Johannes Stöckl, Vittoria Infantino

Molecular and Cellular Biochemistry Faculty Publications

Phenolic compounds of red wine powder (RWP) extracted from the Italian red wine Aglianico del Vulture have been investigated for the potential immunomodulatory and anti-inflammatory capacity on human macrophages. These compounds reduce the secretion of IL-1β, IL-6, and TNF-α proinflammatory cytokines and increase the release of IL-10 anti-inflammatory cytokine induced by lipopolysaccharide (LPS). In addition, RWP restores Annexin A1 levels, thus involving activation of proresolutive pathways. Noteworthy, RWP lowers NF-κB protein levels, promoter activity, and nuclear translocation. As a consequence of NF-κB inhibition, reduced promoter activities of SLC25A1—encoding the mitochondrial citrate carrier …


A Screen Of Fda-Approved Drugs Identifies Inhibitors Of Protein Tyrosine Phosphatase 4a3 (Ptp4a3 Or Prl-3), Dylan R. Rivas, Mark Vincent C. Dela Cerna, Caroline N. Smith, Shilpa Sampathi, Blaine G. Patty, Donghan Lee, Jessica S. Blackburn May 2021

A Screen Of Fda-Approved Drugs Identifies Inhibitors Of Protein Tyrosine Phosphatase 4a3 (Ptp4a3 Or Prl-3), Dylan R. Rivas, Mark Vincent C. Dela Cerna, Caroline N. Smith, Shilpa Sampathi, Blaine G. Patty, Donghan Lee, Jessica S. Blackburn

Molecular and Cellular Biochemistry Faculty Publications

Protein tyrosine phosphatase 4A3 (PTP4A3 or PRL-3) is highly expressed in a variety of cancers, where it promotes tumor cell migration and metastasis leading to poor prognosis. Despite its clinical significance, small molecule inhibitors of PRL-3 are lacking. Here, we screened 1443 FDA-approved drugs for their ability to inhibit the activity of the PRL phosphatase family. We identified five specific inhibitors for PRL-3 as well as one selective inhibitor of PRL-2. Additionally, we found nine drugs that broadly and significantly suppressed PRL activity. Two of these broad-spectrum PRL inhibitors, Salirasib and Candesartan, blocked PRL-3-induced migration in human embryonic kidney cells …


The Context-Dependent Impact Of Integrin-Associated Cd151 And Other Tetraspanins On Cancer Development And Progression: A Class Of Versatile Mediators Of Cellular Function And Signaling, Tumorigenesis And Metastasis, Sonia F. Erfani, Hui Hua, Yueyin Pan, Binhua P. Zhou, Xiuwei H. Yang Apr 2021

The Context-Dependent Impact Of Integrin-Associated Cd151 And Other Tetraspanins On Cancer Development And Progression: A Class Of Versatile Mediators Of Cellular Function And Signaling, Tumorigenesis And Metastasis, Sonia F. Erfani, Hui Hua, Yueyin Pan, Binhua P. Zhou, Xiuwei H. Yang

Molecular and Cellular Biochemistry Faculty Publications

As a family of integral membrane proteins, tetraspanins have been functionally linked to a wide spectrum of human cancers, ranging from breast, colon, lung, ovarian, prostate, and skin carcinomas to glioblastoma. CD151 is one such prominent member of the tetraspanin family recently suggested to mediate tumor development, growth, and progression in oncogenic context- and cell lineage-dependent manners. In the current review, we summarize recent advances in mechanistic understanding of the function and signaling of integrin-associated CD151 and other tetraspanins in multiple cancer types. We also highlight emerging genetic and epigenetic evidence on the intrinsic links between tetraspanins, the epithelial-mesenchymal transition …


Chronic Voluntary Alcohol Drinking Causes Anxiety-Like Behavior, Thiamine Deficiency, And Brain Damage Of Female Crossed High Alcohol Preferring Mice, Hong Xu, Hui Li, Dexiang Liu, Wen Wen, Mei Xu, Jacqueline A. Frank, Jing Chen, Haining Zhu, Nicholas J. Grahame, Jia Luo Mar 2021

Chronic Voluntary Alcohol Drinking Causes Anxiety-Like Behavior, Thiamine Deficiency, And Brain Damage Of Female Crossed High Alcohol Preferring Mice, Hong Xu, Hui Li, Dexiang Liu, Wen Wen, Mei Xu, Jacqueline A. Frank, Jing Chen, Haining Zhu, Nicholas J. Grahame, Jia Luo

Molecular and Cellular Biochemistry Faculty Publications

The central nervous system is vulnerable to chronic alcohol abuse, and alcohol dependence is a chronically relapsing disorder which causes a variety of physical and mental disorders. Appropriate animal models are important for investigating the underlying cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer alcohol to water when given free access. In the present study, we used female cHAP mice as a model of chronic voluntary drinking to evaluate the effects of alcohol on neurobehavioral and neuropathological changes. The female cHAP mice had free-choice access to 10% ethanol and water, while control mice had access to water …


Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun Jan 2021

Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun

Neuroscience Faculty Publications

N-glycans and lipids are structural metabolites that play important roles in cellular processes. Both show unique regional distribution in tissues; therefore, spatial analyses of these metabolites are crucial to our understanding of cellular physiology. Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is an innovative technique that enables in situ detection of analytes with spatial distribution. This workflow details a MALDI-MSI protocol for the spatial profiling of N-glycans and lipids from tissues following application of enzyme and MALDI matrix.

For complete details on the use and execution of this protocol, please refer to Drake et al. (2018) and Andres et al. (2020).


Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee Jan 2021

Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee

Sanders-Brown Center on Aging Faculty Publications

Alzheimer’s disease (AD) includes several hallmarks comprised of amyloid-β (Aβ) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1 …


Development And Clinical Validation Of Knowledge-Based Planning Models For Stereotactic Body Radiotherapy Of Early-Stage Non-Small-Cell Lung Cancer Patients, Justin David Visak Jan 2021

Development And Clinical Validation Of Knowledge-Based Planning Models For Stereotactic Body Radiotherapy Of Early-Stage Non-Small-Cell Lung Cancer Patients, Justin David Visak

Theses and Dissertations--Radiation Medicine

Lung stereotactic body radiotherapy (SBRT) is a viable alternative to surgical intervention for the treatment of early-stage non-small-cell lung cancer (NSCLC) patients. This therapy achieves strong local control rates by delivering ultra-high, conformal radioablative doses in typically one to five fractions. Historically, lung SBRT plans are manually generated using 3D conformal radiation therapy, dynamic conformal arcs (DCA), intensity-modulated radiation therapy, and more recently via volumetric modulated arc therapy (VMAT) on a C-arm linear accelerator (linac). Manually planned VMAT is an advanced technique to deliver high-quality lung SBRT due to its dosimetric capabilities and utilization of flattening-filter free beams to improve …


Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee Jan 2021

Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch and glycogen are an essential component for the majority of species and have been developed to maintain homeostasis in response to environmental changes. Water-soluble glycogen is an excellent source of quick, short-term energy in response to energy demands. In contrast, plants and algae have developed the macromolecule starch that is elegantly suitable for their dependence on external circumstances. Semi-crystalline starch is water-insoluble and inaccessible to most amylolytic enzymes, thus plants and algae have developed a coordinated system so that these enzymes can gain access to the denser starch energy cache. Starch-like semi-crystalline polysaccharides are also found in red algae, …


Abc Transporters In Glioblastoma: Anticancer Drug Transport And Transporter Regulation At The Blood-Brain Barrier, Julia A. Schulz Jan 2021

Abc Transporters In Glioblastoma: Anticancer Drug Transport And Transporter Regulation At The Blood-Brain Barrier, Julia A. Schulz

Theses and Dissertations--Pharmacy

Glioblastoma is one of the deadliest cancers, with a median survival of only one year. Even after aggressive treatment consisting of surgical resection, radiation, and chemotherapy, most glioblastoma patients suffer from tumor recurrence within 6-9 months. One reason for treatment failure of anticancer drugs is the blood-brain barrier that protects the brain by impeding xenobiotic uptake from the blood. To this end, efflux transporters at the human blood-brain barrier, such as P-glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2), prevent many compounds, including anticancer drugs, from entering the brain. Thus far, approaches to deliver anticancer drugs across the blood-brain barrier …