Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

3,6-Dimethoxyxanthone From 2,2’,4,4’- Tetrahydroxy-Benzophenone Via Microwave-Assisted Annulation, Sarah E. Knisely, Faith R. Rosario, Salem F. Gebeyehu, Paige E. Heiple, Robert E. Lee Sr Oct 2022

3,6-Dimethoxyxanthone From 2,2’,4,4’- Tetrahydroxy-Benzophenone Via Microwave-Assisted Annulation, Sarah E. Knisely, Faith R. Rosario, Salem F. Gebeyehu, Paige E. Heiple, Robert E. Lee Sr

Journal of the South Carolina Academy of Science

Xanthones are tricyclic aromatic compounds that have multiple pharmacological uses due to their anti-tumor, antioxidant, anti-inflammatory, anti-bacterial, and potentially chemopreventive properties. The target of this research was to optimize a two-step synthesis of 3,6-dimethoxyxanthone (3) from 2,2’,4,4’-tetrahydroxy-benzophenone (1) via microwave-assisted (200 °C, 30-40 min., 150 W) sodium acetate-catalyzed annulation. The product, 3,6-dihydroxyxanthone (2), was then methylated to (3) using dimethyl sulfate (DMS) and sodium carbonate in acetone at reflux. The product yields were 93% (>99% purity) for (2) and 94% (>99% purity) for (3). Characterization was accomplished using 1H NMR, FTIR, melting point, TLC, HPLC, and GCMS. …


Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender Apr 2021

Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender

Senior Theses

Due to its unique ability to serve as both an electron donor and acceptor, iron is utilized as a co-factor for many biological processes, including electron transfer, oxygen binding, and vitamin synthesis. Iron is also a key factor during fungal infections as the human host and invading pathogens battle over limited iron pools. The primary iron-responsive transcription factor Aft1 in the opportunistic pathogenic yeast Candida glabrata responds to iron deficiency by activating expression of iron acquisition genes. However, the mechanisms for sensing intracellular iron levels and regulating Aft1 activity in response to iron are unknown. The C. glabrata iron regulation …


The Effect Of Alcalase Concentration On The Proteins From The Shells Of Litopenaeus Setiferus (White Shrimp), Liam T. Quan Jan 2021

The Effect Of Alcalase Concentration On The Proteins From The Shells Of Litopenaeus Setiferus (White Shrimp), Liam T. Quan

Journal of the South Carolina Academy of Science

Chitin is a naturally abundant polymer that also happens to be biodegradable. Chitin can be used in a variety of different products such as biodegradable plastics, papers, medical products, foods, and medical treatments. To extract chitin, shells must be demineralized and deproteinized. The goal of this experiment was to examine the effect of the protease Alcalase in the deproteinization of litopenaeus setiferus shells. The hypothesis was that if the concentration of Alcalase increased, then the absorbance of proteins in the spectrophotometer reading would increase. The null hypothesis was that if the concentration increased there would be no change in absorption. …


Characterizing Aft1/2-Grx3/4 Interaction And The Role Of Bol2 During Iron Regulation In Saccharomyces Cerevisiae, William Rivers Apr 2019

Characterizing Aft1/2-Grx3/4 Interaction And The Role Of Bol2 During Iron Regulation In Saccharomyces Cerevisiae, William Rivers

Senior Theses

Iron dysregulation has been linked to a variety of human diseases, such as anemia, Friedreich’s ataxia, X-linked sideroblastic anemia, sideroblastic-like microcytic anemia, and myopathy. Thus, it is vitally important to understand the mechanisms for regulating intracellular iron. Here, we use fluorescence microscopy techniques in live cells to study interactions of the yeast proteins Grx3/4, Aft1/2, and Bol2, which have been shown to be involved in turning off iron import when the cell has adequate iron. Modified versions of genes encoding these proteins have been incorporated into several yeast backgrounds to use fluorescence to monitor interactions under varying iron levels.


Novel Role Of Antioxidant-1 (Atox1) As A Copper-Dependent Transcription Factor Involved In Cell Proliferation, S. Itoh, H. W. Kim, O. Nakagawa, K. Ozumi, Susan M. Lessner, H. Aoki, K. Akram, R. D. Mckinney, M. Ushio-Fukai, T. Fukai Feb 2008

Novel Role Of Antioxidant-1 (Atox1) As A Copper-Dependent Transcription Factor Involved In Cell Proliferation, S. Itoh, H. W. Kim, O. Nakagawa, K. Ozumi, Susan M. Lessner, H. Aoki, K. Akram, R. D. Mckinney, M. Ushio-Fukai, T. Fukai

Faculty Publications

Copper plays a fundamental role in regulating cell growth. Many types of human cancer tissues have higher copper levels than normal tissues. Copper can also induce gene expression. However, transcription factors that mediate copper-induced cell proliferation have not been identified in mammals. Here we show that antioxidant-1 (Atox1), previously appreciated as a copper chaperone, represents a novel copper-dependent transcription factor that mediates copper-induced cell proliferation. Stimulation of mouse embryonic fibroblasts (MEFs) with copper markedly increased cell proliferation, cyclin D1 expression, and entry into S phase, which were completely abolished in Atox1-/- MEFs. Promoter analysis and EMSA revealed that copper …