Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Methyltransferase, Glucose Adaptation, And Import Complex In Trypanosoma Brucei, Emily Knight May 2023

Methyltransferase, Glucose Adaptation, And Import Complex In Trypanosoma Brucei, Emily Knight

All Dissertations

Trypanosoma brucei is a kinetoplastid parasite responsible for human African trypanosomiasis (HAT) and nagana, a livestock wasting disease, which both endemic to sub-Saharan Africa. Unique to kinetoplastids are the specialized peroxisomes, named glycosomes, which compartmentalize the first several steps of glycolysis and gluconeogenesis, nucleotide sugar biosynthesis, and many other metabolic processes. Kinetoplastids are unique in that they have a single mitochondrion. In this work, I present the first study into SET domain proteins in any kinetoplastid parasites. We have characterized a predicted SET domain protein, TbSETD3, that localizes to the mitochondrion and a depletion of the protein results in growth …


Acetate Metabolism In The Fungal Pathogen Cryptococcus Neoformans, Oly Ahmed May 2023

Acetate Metabolism In The Fungal Pathogen Cryptococcus Neoformans, Oly Ahmed

All Dissertations

Cryptococcus neoformans is an environmental basidiomycetous fungus with a worldwide distribution and a wide range of habitats. Inhalation of the desiccated yeasts or spores of C. neoformans often leads to opportunistic pulmonary infections in immunocompromised individuals, and in severe cases causes lethal meningitis following hematogenous dissemination. During infection, depending on the tissue and disease state, the invading fungi experience a range of nutrient microenvironments within the host body. As a result, rapid metabolic adaptations geared towards efficient utilization of carbon sources alternative to glucose become one of the prime determinants of survival and growth for the pathogen. Incidentally, cryptococcal infection …


Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala Aug 2022

Modeling Electrostatics In Molecular Biology And Its Relevance With Molecular Mechanisms Of Diseases, Mahesh Koirala

All Dissertations

Electrostatics plays an essential role in molecular biology. Modeling electrostatics in molecular biology is complicated due to the water phase, mobile ions, and irregularly shaped inhomogeneous biological macromolecules. This dissertation presents the popular DelPhi package that solves PBE and delivers the electrostatic potential distribution of biomolecules. We used the newly developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the binding of barstar to barnase and demonstrated that the first-principles method could also model the binding. This dissertation also reflects the use of existing computational approaches to model the effects of Single Amino Acid Variations (SAVs) to reveal molecular mechanisms …


Heat Stress Response And Excystation In Entamoeba Histolytica, Irem Bastuzel Aug 2022

Heat Stress Response And Excystation In Entamoeba Histolytica, Irem Bastuzel

All Dissertations

Entamoeba histolytica is a water- and food-borne intestinal protozoan parasite that causes amoebiasis and liver abscess and is responsible for symptomatic disease in approximately 100 million people each year leading to ~ 100,000 deaths. The most common disease transmission follows the oral-fecal route, but it can also be transmitted by mechanical vectors such as animals carrying the amoeba from contaminated sources to water systems. In rare cases, disease transmission has been recorded in some patients in which men-to-men sexual practices were preferred.

The life cycle of E. histolytica starts through ingestion of infectious cysts, which are non-dividing, quadri-nucleated structures surrounded …


Tackling Adverse Environment—Molecular Mechanism Of Plant Stress Response And Biotechnology Tool Development, Ning Yuan Aug 2016

Tackling Adverse Environment—Molecular Mechanism Of Plant Stress Response And Biotechnology Tool Development, Ning Yuan

All Dissertations

Abiotic and biotic stresses such as drought, salt, nutrition starvation, and pathogen infection are major factors threatening our agricultural production. With the rapidly increasing population and limited arable land area, genetic engineering of crops for new products with more stable and higher yield than conventional cultivars under adverse environment provides a powerful new tool for use in developing novel GMOs (Genetically Modified Organisms) to feed the large population in the immediate future. To develop novel GMOs with enhanced performance under adverse conditions, we need first to understand molecular mechanisms underlying plant stress response. To better understand how signaling transduction pathway …


Phosphotransacetylase And Xylulose 5-Phosphate/Fructose 6-Phosphate Phosphoketolase: Two Eukaryotic Partners Of Acetate Kinase, Tonya Taylor May 2015

Phosphotransacetylase And Xylulose 5-Phosphate/Fructose 6-Phosphate Phosphoketolase: Two Eukaryotic Partners Of Acetate Kinase, Tonya Taylor

All Dissertations

Although acetate is a predominant metabolite produced by many eukaryotic microbes, far less attention has been given to acetate metabolism in eukaryotes than in bacteria and archaea. Acetate kinase (Ack), which catalyzes the reversible phosphorylation of acetate from ATP, is a key enzyme in bacterial acetate metabolism. Ack primarily partners with phosphotransacetylase (Pta), which catalyzes the generation of acetyl phosphate from acetyl-CoA, but can also partner with xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp), which produces acetyl phosphate from either xylulose 5-phosphate or fructose 6-phosphate. The Ack-Pta pathway, found primarily in bacteria, is also present in lower eukaryotes such as the green …