Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker Feb 2022

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric …


Understanding And Exploiting Protein Allostery And Dynamics Using Molecular Simulations, Sukrit Singh Jan 2021

Understanding And Exploiting Protein Allostery And Dynamics Using Molecular Simulations, Sukrit Singh

Arts & Sciences Electronic Theses and Dissertations

Protein conformational landscapes contain much of the functionally relevant information that is useful for understanding biological processes at the chemical scale. Understanding and mapping out these conformational landscapescan provide valuable insight into protein behaviors and biological phenomena, and has relevance to the process of therapeutic design.

While structural biology methods have been transformative in studying protein dynamics, they are limited by technicallimitations and have inherent resolution limits. Molecular dynamics (MD) simulations are a powerful tool for exploring conformational landscapes, and provide atomic-scale information that is useful in understanding protein behaviors. With recent advances in generating datasets of large timescale simulations …


Computational Investigation Of The Pore Formation Mechanism Of Beta-Hairpin Antimicrobial Peptides, Richard Lipkin Sep 2017

Computational Investigation Of The Pore Formation Mechanism Of Beta-Hairpin Antimicrobial Peptides, Richard Lipkin

Dissertations, Theses, and Capstone Projects

β-hairpin antimicrobial peptides (AMPs) are small, usually cationic peptides that provide innate biological defenses against multiple agents. They have been proposed as the basis for novel antibiotics, but their pore formation has not been directly observed on a molecular level. We review previous computational studies of peptide-induced membrane pore formation and report several new molecular dynamics simulations of β-hairpin AMPs to elucidate their pore formation mechanism. We simulated β-barrels of various AMPs in anionic implicit membranes, finding that most of the AMPs’ β-barrels were not as stable as those of protegrin. We also performed an optimization study of protegrin β-barrels …