Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Role Of Incompatibility Group 1 (Inci1) Plasmid-Encoded Factors On Salmonella Enterica Antimicrobial Resistance And Virulence, Pravin Raghunath Kaldhone Dec 2017

Role Of Incompatibility Group 1 (Inci1) Plasmid-Encoded Factors On Salmonella Enterica Antimicrobial Resistance And Virulence, Pravin Raghunath Kaldhone

Graduate Theses and Dissertations

Foodborne illnesses are a leading cause of infectious diseases in the world. Among enteric organisms Salmonella is a key pathogen. It’s high prevalence in poultry and other food-animal sources make it imperative to study. Salmonella has the ability to modify its genetic content with help of mobile genetic elements such as plasmids. Incompatibiltiy group 1 (IncI1) plasmids are commonly reported in Salmonella. This study evaluates role on IncI1 plasmids in antimicrobial resistance and virulence in Salmonella. Genetic determinants of resistance and virulence are noted among our IncI1-containing Salmonella isolates. These genetic elements are also transferable and reported to carry respective …


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly …


Quantifying And Resolving Multiple Vector Transformants In S. Cerevisiae Plasmid Libraries, Thomas C. Scanlon, Elizabeth C. Gray, Karl E. Griswold Nov 2009

Quantifying And Resolving Multiple Vector Transformants In S. Cerevisiae Plasmid Libraries, Thomas C. Scanlon, Elizabeth C. Gray, Karl E. Griswold

Dartmouth Scholarship

In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the …


Optimization Of Cutaneous Electrically Mediated Plasmid Dna Delivery Using Novel Electrode, L. C. Heller, M. J. Jaroszeski, D. Coppola, A. N. Mccray, J. Hickey, R. Heller Feb 2007

Optimization Of Cutaneous Electrically Mediated Plasmid Dna Delivery Using Novel Electrode, L. C. Heller, M. J. Jaroszeski, D. Coppola, A. N. Mccray, J. Hickey, R. Heller

Bioelectrics Publications

The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo. A critical component of this technique is the electrode configuration. Electroporation parameters were optimized for transgene expression with minimal tissue damage with a novel electrode. The highest transgene expression and efficiency of individual cell transformation with minimal damage was produced with eight 150 ms pulses at field strength of …


Evaluation Of Toxicity Following Electrically Mediated Interleukin-12 Gene Delivery In A B16 Mouse Melanoma Model, Loree Heller, Kathleen Merkler, Jeffrey Westover, Yolmari Cruz, Domenico Coppola, Kaaron Benson, Adil Daud, Richard Heller May 2006

Evaluation Of Toxicity Following Electrically Mediated Interleukin-12 Gene Delivery In A B16 Mouse Melanoma Model, Loree Heller, Kathleen Merkler, Jeffrey Westover, Yolmari Cruz, Domenico Coppola, Kaaron Benson, Adil Daud, Richard Heller

Bioelectrics Publications

PURPOSE: Interleukin-12 (IL-12) has potential as an immunotherapeutic agent for the treatment of cancer but is unfortunately associated with toxicity. Delivery of a plasmid encoding IL-12 with electroporation induces an antitumor effect in the B16 mouse melanoma model without serious side effects. To translate this observation to the clinic, an evaluation of toxicity was done in the mouse model.

EXPERIMENTAL DESIGN: Weight change, tumor response, blood chemistry and hematology values, and serum IL-12 levels were evaluated. Multiple tissues were analyzed histopathologically.

RESULTS: A pronounced reduction in tumor volume, including a large percentage of complete regressions, was observed after electrically mediated …


Investigation Of The Substrate Recognition Characteristics And Kinetics Of Mammalian Mitochondrial Dna Topoisomerase I, Zeki Topcu Jul 1995

Investigation Of The Substrate Recognition Characteristics And Kinetics Of Mammalian Mitochondrial Dna Topoisomerase I, Zeki Topcu

Theses and Dissertations in Biomedical Sciences

Topoisomerases are DNA-modifying enzymes found in prokaryotes, eukaryotes, viruses and organelles such as chloroplast and mitochondria. Information about these enzymes in eukaryotic systems is mostly limited to nuclear enzymes, although our laboratory has been characterizing the biochemical and biophysical properties of the mammalian mitochondrial topoisomerases. We have determined the polarity of the attachment of mitochondrial topoisomerase I to its substrate DNA. To study the substrate preference and kinetic parameters of mitochondrial topoisomerase I, selected regions of mammalian mitochondrial DNA (mtDNA) were inserted into pGEM plasmid vectors following a series of modification and optimization experiments of currently available methods for PCR-cloning. …