Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Investigating The Biochemical Properties Of A Novel Mutation, A194v, In Human Rad51, Briana Vollbeer Aug 2022

Investigating The Biochemical Properties Of A Novel Mutation, A194v, In Human Rad51, Briana Vollbeer

All Theses

DNA double-strand breaks (DSB) are one of the most serious DNA lesions because improper repair of a DSB can lead to loss of heterozygosity, aneuploidy, and cancer. One of the primary pathways to repair DSBs is homologous recombination (HR). HR resects the DNA around the DSB and then uses homologous DNA as a template to restore the broken sequence. RAD51 has a vital function in this pathway by forming a nucleoprotein filament on a resected end of the DSB. The nucleoprotein filament searches for homology within the homologous DNA. Once homology is located, strand invasion followed by strand exchange occurs. …


Heat Stress Response And Excystation In Entamoeba Histolytica, Irem Bastuzel Aug 2022

Heat Stress Response And Excystation In Entamoeba Histolytica, Irem Bastuzel

All Dissertations

Entamoeba histolytica is a water- and food-borne intestinal protozoan parasite that causes amoebiasis and liver abscess and is responsible for symptomatic disease in approximately 100 million people each year leading to ~ 100,000 deaths. The most common disease transmission follows the oral-fecal route, but it can also be transmitted by mechanical vectors such as animals carrying the amoeba from contaminated sources to water systems. In rare cases, disease transmission has been recorded in some patients in which men-to-men sexual practices were preferred.

The life cycle of E. histolytica starts through ingestion of infectious cysts, which are non-dividing, quadri-nucleated structures surrounded …


Characterization Of A Potential Glucose Transporter In Trypanosoma Brucei, Matthew Morgan May 2022

Characterization Of A Potential Glucose Transporter In Trypanosoma Brucei, Matthew Morgan

All Theses

Trypanosoma brucei, the African trypanosome, is an organism heavily dependent on glucose for ATP production during the infectious stage of its life cycle. Here, we have explored the role of an uncharacterized protein designated “novel glucose transporter” (NGT) as a potential glucose transporter. Sequence analyses suggests that NGT shares similarities (either at the primary sequence level or structurally) with Trypanosome Hexose Transporters 1 (TbTHT1), and human GLUT3, both of which are membrane sugar transporters. NGT was localized by fluorescence microscopy to subcellular structures consistent with lysosomes. Silencing NGT expression with RNA interference in parasites resulted in a growth defect …