Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

Clemson University

2016

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Tackling Adverse Environment—Molecular Mechanism Of Plant Stress Response And Biotechnology Tool Development, Ning Yuan Aug 2016

Tackling Adverse Environment—Molecular Mechanism Of Plant Stress Response And Biotechnology Tool Development, Ning Yuan

All Dissertations

Abiotic and biotic stresses such as drought, salt, nutrition starvation, and pathogen infection are major factors threatening our agricultural production. With the rapidly increasing population and limited arable land area, genetic engineering of crops for new products with more stable and higher yield than conventional cultivars under adverse environment provides a powerful new tool for use in developing novel GMOs (Genetically Modified Organisms) to feed the large population in the immediate future. To develop novel GMOs with enhanced performance under adverse conditions, we need first to understand molecular mechanisms underlying plant stress response. To better understand how signaling transduction pathway …


Heterologous Expression Of A Rice Mir395 Gene In Nicotiana Tabacum Impairs Sulfate Homeostasis, Ning Yuan, Shuangrong Yuan, Zhigang Li, Dayong Li, Qian Hu, Hong Luo Jun 2016

Heterologous Expression Of A Rice Mir395 Gene In Nicotiana Tabacum Impairs Sulfate Homeostasis, Ning Yuan, Shuangrong Yuan, Zhigang Li, Dayong Li, Qian Hu, Hong Luo

Publications

Sulfur participates in many important mechanisms and pathways of plant development. The most common source of sulfur in soil –SO42−– is absorbed into root tissue and distributed into aerial part through vasculature system, where it is reduced into sulfite and finally sulfide within the subcellular organs such as chloroplasts and mitochondria and used for cysteine and methionine biosynthesis. MicroRNAs are involved in many regulation pathways by repressing the expression of their target genes. MiR395 family in Arabidopsis thaliana has been reported to be an important regulator involved in sulfate transport and assimilation, and a high-affinity sulphate transporter …