Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Substituted Anthraquinones Represent A Potential Scaffold For Dna Methyltransferase 1-Specific Inhibitors, Rebecca L. Switzer, Jessica Medrano, David A. Reedel, Jill Weiss Jul 2019

Substituted Anthraquinones Represent A Potential Scaffold For Dna Methyltransferase 1-Specific Inhibitors, Rebecca L. Switzer, Jessica Medrano, David A. Reedel, Jill Weiss

Faculty Journal Articles

In humans, the most common epigenetic DNA modification is methylation of the 5-carbon of cytosines, predominantly in CpG dinucleotides. DNA methylation is an important epigenetic mark associated with gene repression. Disruption of the normal DNA methylation pattern is known to play a role in the initiation and progression of many cancers. DNA methyltransferase 1 (DNMT1), the most abundant DNA methyltransferase in humans, is primarily responsible for maintenance of the DNA methylation pattern and is considered an important cancer drug target. Recently, laccaic acid A (LCA), a highly substituted anthraquinone natural product, was identified as a direct, DNA-competitive inhibitor of DNMT1. …


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

Dissertations & Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is …


Epigenetic Instability Induced By Dna Base Lesion Via Dna Base Excision Repair, Zhongliang Jiang Sep 2017

Epigenetic Instability Induced By Dna Base Lesion Via Dna Base Excision Repair, Zhongliang Jiang

FIU Electronic Theses and Dissertations

DNA damage can cause genome instability, which may lead to human cancer. The most common form of DNA damage is DNA base damage, which is efficiently repaired by DNA base excision repair (BER). Thus BER is the major DNA repair pathway that maintains the stability of the genome. On the other hand, BER mediates DNA demethylation that can occur on the promoter region of important tumor suppressor genes such as Breast Cancer 1 (BRCA1) gene that is also involved in prevention and development of cancer. In this study, employing cell-based and in vitro biochemical approaches along with bisulfite DNA sequencing, …


Microarray Dataset Of Transient And Permanent Dna Methylation Changes In Hela Cells Undergoing Inorganic Arsenic-Mediated Epithelial-To-Mesenchymal Transition, Meredith Eckstein, Matthew Rea, Yvonne N. Fondufe-Mittendorf May 2017

Microarray Dataset Of Transient And Permanent Dna Methylation Changes In Hela Cells Undergoing Inorganic Arsenic-Mediated Epithelial-To-Mesenchymal Transition, Meredith Eckstein, Matthew Rea, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

The novel dataset presented here represents the results of the changing pattern of DNA methylation profiles in HeLa cells exposed to chronic low dose (0.5 µM) sodium arsenite, resulting in epithelial-to-mesenchymal transition, as well as DNA methylation patterns in cells where inorganic arsenic has been removed. Inorganic arsenic is a known carcinogen, though not mutagenic. Several mechanisms have been proposed as to how inorganic arsenic drives carcinogenesis such as regulation of the cell׳s redox potential and/or epigenetics. In fact, there are gene specific studies and limited genome-wide studies that have implicated epigenetic factors such as DNA methylation in inorganic arsenic-mediated …


Epigenomic Reprogramming In Inorganic Arsenic-Mediated Gene Expression Patterns During Carcinogenesis, Meredith Eckstein, Rebekah Eleazer, Matthew Rea, Yvonne N. Fondufe-Mittendorf Mar 2017

Epigenomic Reprogramming In Inorganic Arsenic-Mediated Gene Expression Patterns During Carcinogenesis, Meredith Eckstein, Rebekah Eleazer, Matthew Rea, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Arsenic is a ubiquitous metalloid that is not mutagenic but is carcinogenic. The mechanism(s) by which arsenic causes cancer remain unknown. To date, several mechanisms have been proposed, including the arsenic-induced generation of reactive oxygen species (ROS). However, it is also becoming evident that inorganic arsenic (iAs) may exert its carcinogenic effects by changing the epigenome, and thereby modifying chromatin structure and dynamics. These epigenetic changes alter the accessibility of gene regulatory factors to DNA, resulting in specific changes in gene expression both at the levels of transcription initiation and gene splicing. In this review, we discuss recent literature reports …


Genome-Wide Dna Methylation Reprogramming In Response To Inorganic Arsenic Links Inhibition Of Ctcf Binding, Dnmt Expression And Cellular Transformation, Matthew Rea, Meredith Eckstein, Rebekah Eleazer, Caroline Smith, Yvonne N. Fondufe-Mittendorf Feb 2017

Genome-Wide Dna Methylation Reprogramming In Response To Inorganic Arsenic Links Inhibition Of Ctcf Binding, Dnmt Expression And Cellular Transformation, Matthew Rea, Meredith Eckstein, Rebekah Eleazer, Caroline Smith, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. …