Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs

2012

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 21 of 21

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

(R)-Β-Lysine Modified Elongation Factor P Functions In Translation Elongation, Tammy J. Bullwinkle, S. Betty Zou, Andrei Rajkovic, Steven J. Hersch, Sara Elgamal, Nathaniel Robinson, David Smil, Yuri Bolshan, William Wiley Navarre, Michael Ibba Dec 2012

(R)-Β-Lysine Modified Elongation Factor P Functions In Translation Elongation, Tammy J. Bullwinkle, S. Betty Zou, Andrei Rajkovic, Steven J. Hersch, Sara Elgamal, Nathaniel Robinson, David Smil, Yuri Bolshan, William Wiley Navarre, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was …


Selection Of Trna Charging Quality Control Mechanisms That Increase Mistranslation Of The Genetic Code, Srujana S. Yadavalli, Michael Ibba Dec 2012

Selection Of Trna Charging Quality Control Mechanisms That Increase Mistranslation Of The Genetic Code, Srujana S. Yadavalli, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms are not evolutionarily conserved, and their physiological significance remains unclear. To address the connection between aaRSs and mistranslation, the evolutionary divergence of tyrosine editing by phenylalanyl-tRNA synthetase (PheRS) was used as a model. Certain PheRSs are naturally error prone, most notably a Mycoplasma example that displayed a low level of specificity consistent with elevated mistranslation of the proteome. Mycoplasma PheRS was found …


Molecular Mechanism For Depolarization-Induced Modulation Of Kv Channel Closure, Alain J. Labro, Jerome J. Lacroix, Carlos A. Villalba-Galea, Dirk J. Snyders, Francisco Bezanilla Nov 2012

Molecular Mechanism For Depolarization-Induced Modulation Of Kv Channel Closure, Alain J. Labro, Jerome J. Lacroix, Carlos A. Villalba-Galea, Dirk J. Snyders, Francisco Bezanilla

School of Pharmacy Faculty Articles

Voltage-dependent potassium (Kv) channels provide the repolarizing power that shapes the action potential duration and helps control the firing frequency of neurons. The K(+) permeation through the channel pore is controlled by an intracellularly located bundle-crossing (BC) gate that communicates with the voltage-sensing domains (VSDs). During prolonged membrane depolarizations, most Kv channels display C-type inactivation that halts K(+) conduction through constriction of the K(+) selectivity filter. Besides triggering C-type inactivation, we show that in Shaker and Kv1.2 channels (expressed in Xenopus laevis oocytes), prolonged membrane depolarizations also slow down the kinetics of VSD deactivation and BC gate closure during the …


A Human Phospholipid Phosphatase Activated By A Transmembrane Control Module, Christian R. Halaszovich, Michael G. Leitner, Angeliki Mavrantoni, Audrey Le, Ludivine Frezza, Anja Feuer, Daniela N. Schreiber, Carlos A. Villalba-Galea, Dominik Oliver Nov 2012

A Human Phospholipid Phosphatase Activated By A Transmembrane Control Module, Christian R. Halaszovich, Michael G. Leitner, Angeliki Mavrantoni, Audrey Le, Ludivine Frezza, Anja Feuer, Daniela N. Schreiber, Carlos A. Villalba-Galea, Dominik Oliver

School of Pharmacy Faculty Articles

In voltage-sensitive phosphatases (VSPs), a transmembrane voltage sensor domain (VSD) controls an intracellular phosphoinositide phosphatase domain, thereby enabling immediate initiation of intracellular signals by membrane depolarization. The existence of such a mechanism in mammals has remained elusive, despite the presence of VSP-homologous proteins in mammalian cells, in particular in sperm precursor cells. Here we demonstrate activation of a human VSP (hVSP1/TPIP) by an intramolecular switch. By engineering a chimeric hVSP1 with enhanced plasma membrane targeting containing the VSD of a prototypic invertebrate VSP, we show that hVSP1 is a phosphoinositide-5-phosphatase whose predominant substrate is PI(4,5)P(2). In the chimera, enzymatic activity …


Voltage-Controlled Enzymes: The New Janus Bifrons, Carlos A. Villalba-Galea Sep 2012

Voltage-Controlled Enzymes: The New Janus Bifrons, Carlos A. Villalba-Galea

School of Pharmacy Faculty Articles

The Ciona intestinalis voltage-sensitive phosphatase, Ci-VSP, was the first Voltage-controlled Enzyme (VEnz) proven to be under direct command of the membrane potential. The discovery of Ci-VSP conjugated voltage sensitivity and enzymatic activity in a single protein. These two facets of Ci-VSP activity have provided a unique model for studying how membrane potential is sensed by proteins and a novel mechanism for control of enzymatic activity. These facets make Ci-VSP a fascinating and versatile enzyme. Ci-VSP has a voltage sensing domain (VSD) that resembles those found in voltage-gated channels (VGC). The VSD resides in the N-terminus and is formed by four …


Taking Aim At The Start Of Translation, Medha Raina, Michael Ibba Aug 2012

Taking Aim At The Start Of Translation, Medha Raina, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

No abstract provided.


Quantification And In Vitro Analysis Of Nanolipoproteins (Nlps) Containing Adjuvants, Purna Venkataraman, Craig Blanchette, Nicholas O. Fischer Aug 2012

Quantification And In Vitro Analysis Of Nanolipoproteins (Nlps) Containing Adjuvants, Purna Venkataraman, Craig Blanchette, Nicholas O. Fischer

STAR Program Research Presentations

Nanolipoprotein particles (NLPs) self-assemble into nanoscale structures that can be used as vaccines or drug delivery agents. Due to the nature of the NLPs, a variety of immune stimulating compounds or adjuvants can be readily incorporated into NLPs: a characteristic difficult to engineer into most other nanoscale platforms. In light of this, a method for quantifying the amount adjuvant actually incorporated into NLPs is a question of high importance. Through the use of reverse phase High-Performance Liquid Chromatography (HPLC) and an Evaporative Light Scattering Detector (ELSD), standard curves can be constructed by analyzing mixtures of NLP components of known concentration, …


A Pseudo-Trna Modulates Antibiotic Resistance In Bacillus Cereus, Theresa E. Rogers, Sandro F. Ataide, Kiley Dare, Assaf Katz, Stephanie Seveau, Hervé Roy, Michael Ibba Jul 2012

A Pseudo-Trna Modulates Antibiotic Resistance In Bacillus Cereus, Theresa E. Rogers, Sandro F. Ataide, Kiley Dare, Assaf Katz, Stephanie Seveau, Hervé Roy, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial genomic islands are often flanked by tRNA genes, which act as sites for the integration of foreign DNA into the host chromosome. For example, Bacillus cereus ATCC14579 contains a pathogenicity island flanked by a predicted pseudo-tRNA, tRNAOther, which does not function in translation. Deletion of tRNAOther led to significant changes in cell wall morphology and antibiotic resistance and was accompanied by changes in the expression of numerous genes involved in oxidative stress responses, several of which contain significant complementarities to sequences surrounding tRNAOther. This suggested that tRNAOther might be expressed as part of a larger RNA, and RACE analysis …


Identification Of Persistent Long Range Interactions In GA95 And GB95 Through Thermal Unfolding Simulations, Milen Redai Tesfamariam Jul 2012

Identification Of Persistent Long Range Interactions In GA95 And GB95 Through Thermal Unfolding Simulations, Milen Redai Tesfamariam

Chemistry & Biochemistry Theses & Dissertations

For over five decades, different experiments have been performed to research how proteins attain their native three dimensional structures. However, the folding problem continues to be a puzzle in modern science. The design of two proteins that have maximal sequence identity but different folds and functions is one method that is being used to study the relationship between protein structure and amino acid sequence. In particular, mutant proteins of Streptococcus protein G, GA and GB, have 95% sequence identity and a 3a helix fold and β4/a fold, respectively. Molecular dynamics simulations of GA95 …


Association Of A Multi-Synthetase Complex With Translating Ribosomes In The Archaeon Thermococcus Kodakarensis, Medha Raina, Sara Elgamal, Thomas J. Santangelo, Michael Ibba Jun 2012

Association Of A Multi-Synthetase Complex With Translating Ribosomes In The Archaeon Thermococcus Kodakarensis, Medha Raina, Sara Elgamal, Thomas J. Santangelo, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In archaea and eukaryotes aminoacyl-tRNA synthetases (aaRSs) associate in multi-synthetase complexes (MSCs), however the role of such MSCs in translation is unknown. MSC function was investigated in vivo in the archaeon Thermococcus kodakarensis, wherein six aaRSs were affinity co-purified together with several other factors involved in protein synthesis, suggesting that MSCs may interact directly with translating ribosomes. In support of this hypothesis, the aminoacyltRNA synthetase (aaRS) activities of the MSC were enriched in isolated T. kodakarensis polysome fractions. These data indicate that components of the archaeal protein synthesis machinery associate into macromolecular assemblies in vivo and provide the potential …


A Study Of Histone Deacetylase Inhibitors: Determination Of The Binding Energetics Of Suberoylanilide Hydroxamic Acid With Zinc And Cobalt And Preliminary Screening Of Nitric Oxide Donors, Erin Gallagher Jun 2012

A Study Of Histone Deacetylase Inhibitors: Determination Of The Binding Energetics Of Suberoylanilide Hydroxamic Acid With Zinc And Cobalt And Preliminary Screening Of Nitric Oxide Donors, Erin Gallagher

College of Science and Health Theses and Dissertations

Inhibiting histone deacetylases (HDACs) can suppress tumor cell growth eventually leading to their death, makeing HDACs an important drug target. Therefore, understanding the mechanism behind inhibiting HDACs is imperative. To determine the thermodynamic parameters for the interaction of a known competitive HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), with zinc(II), the metal ion in the HDAC active site, and cobalt(II), isothermal titration calorimetry (ITC) was used. The results showed that SAHA binds to zinc(II) more strongly than it does to cobalt(II) as the equilibrium binding constants were 4.3 ± 0.5 x 102 M-1 and 2.0 ± 0.5 x 10 …


Chemosensitization Of Hepatocellular Carcinoma To Gemcitabine By Non-Invasive Radiofrequency Field-Induced Hyperthermia, Mustafa Raoof May 2012

Chemosensitization Of Hepatocellular Carcinoma To Gemcitabine By Non-Invasive Radiofrequency Field-Induced Hyperthermia, Mustafa Raoof

Dissertations & Theses (Open Access)

Gemcitabine is a potent nucleoside analogue against solid tumors however drug resistance rapidly emerges. Removal of gemcitabine incorporated in the DNA by repair mechanisms could potentially contribute to resistance in chemo-refractory solid tumors. In this study, we evaluated homologous recombination repair of gemcitabine-stalled replication forks as a potential mechanism contributing to resistance. We also studied the effect of hyperthermia on homologous recombination pathway to explain the previously reported synergy between gemcitabine and hyperthermia. We found that hyperthermia degrades and inhibits localization of Mre11 to gemcitabine-stalled replication forks. Furthermore, gemcitabine-treated cells that were also treated with hyperthermia demonstrate a prolonged passage …


Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall May 2012

Increased Geranylgeranylated K-Ras Contributes To Antineoplastic Effects Of Farnesyltransferase Inhibitors., Mandy A. Hall

Dissertations & Theses (Open Access)

The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are …


Cryo-Em Structure Of The Archaeal 50s Ribosomal Subunit In Complex With Initiation Factor 6 And Implications For Ribosome Evolution, Basil J. Greber, Daniel Boehringer, Vlatka Godinic-Mikulcic, Ana Crnkovic, Michael Ibba, Ivana Weygand-Durasevic, Nenad Ban Jan 2012

Cryo-Em Structure Of The Archaeal 50s Ribosomal Subunit In Complex With Initiation Factor 6 And Implications For Ribosome Evolution, Basil J. Greber, Daniel Boehringer, Vlatka Godinic-Mikulcic, Ana Crnkovic, Michael Ibba, Ivana Weygand-Durasevic, Nenad Ban

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Translation of mRNA into proteins by the ribosome is universally conserved in all cellular life. The composition and complexity of the translation machinery differ markedly between the three domains of life. Organisms from the domain Archaea show an intermediate level of complexity, sharing several additional components of the translation machinery with eukaryotes that are absent in bacteria. One of these translation factors is initiation factor 6 (IF6), which associates with the large ribosomal subunit. We have reconstructed the 50S ribosomal subunit from the archaeon Methanothermobacter thermautotrophicus in complex with archaeal IF6 at 6.6 Å resolution using cryo-electron microscopy (EM). The …


Roles Of Trna In Cell Wall Biosynthesis, Kiley Dare, Michael Ibba Jan 2012

Roles Of Trna In Cell Wall Biosynthesis, Kiley Dare, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl‐transfer ribonucleic acid (aa‐tRNA) outside of translation. Although the two enzyme families responsible for cell wall modifications, aminoacyl‐phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem transferases utilize …


Linus Pauling: Scientist Of The 20th Century, Laura Ward Jan 2012

Linus Pauling: Scientist Of The 20th Century, Laura Ward

Natural Sciences Student Research Presentations

This poster describes the contributions scientist Linus Pauling made to the fields of chemistry and molecular biology, including his hybridization theory.


Intestinal, Airway, And Cardiovascular Relaxant Activities Of Thymoquinone, Muhammad Nabeel Ghayur, Anwar Hussain Gilani, Luke Jeffrey Janssen Jan 2012

Intestinal, Airway, And Cardiovascular Relaxant Activities Of Thymoquinone, Muhammad Nabeel Ghayur, Anwar Hussain Gilani, Luke Jeffrey Janssen

Department of Biological & Biomedical Sciences

Thymoquinone (TQ) is a bioactive component found in many medicinal herbs. In this study, we report the smooth and cardiac muscle relaxant activities of this compound. TQ concentration dependently suppressed spontaneously contracting rabbit jejunum while also relaxed high K+-(80 mM) induced contractions in jejunum and guinea-pig ileum, indicating activity at voltage-operated Ca++ channels (VOCC). Further, TQ displaced Ca++ concentration-response curves, obtained in a Ca++-free environment, to the right, showing blockade of VOCC. Similar activity was observed with verapamil, a standard VOCC blocker. TQ also exhibited nonadrenergic relaxation of agonist-induced contractions in guinea-pig trachea. When tested in fluo-4-loaded mouse lung slices, …


A Proposal To Test The Effects Of Factor Ecat1 On Pluripotency, From Reprogramming To Differentiation Of Human Somatic Cells, Vritti R. Goel Jan 2012

A Proposal To Test The Effects Of Factor Ecat1 On Pluripotency, From Reprogramming To Differentiation Of Human Somatic Cells, Vritti R. Goel

CMC Senior Theses

The field of stem cell research has been growing more because of the interest in using stem cells to cure diseases and heal injuries. Human embryonic stem cells, because of the controversy surrounding them—and subsequently the difficulties in acquiring samples of the existing aging cell lines—can only be used in limited capacities. While the development of induced pluripotent stem cells in the last decade has allowed the field to progress closer to medical treatments, the low efficiency of reprogramming a somatic cell to a pluripotent state, and the vast molecular and genomic differences between human embryonic stem cells and human …


Protein Structure Networks, Lesley H. Greene Jan 2012

Protein Structure Networks, Lesley H. Greene

Chemistry & Biochemistry Faculty Publications

The application of the field of network science to the scientific disciplines of structural biology and biochemistry, have yielded important new insights into the nature and determinants of protein structures, function, dynamics and the folding process. Advancements in further understanding protein relationships through network science have also reshaped the way we view the connectivity of proteins in the protein universe. The canonical hierarchical classification can now be visualized for example, as a protein fold continuum. This review will survey several key advances in the expanding area of research being conducted to study protein structures and folding using network approaches.


Enantioselective Demethylation: The Key To The Nornicotine Enantiomeric Composition In Tobacco Leaf, Bin Cai Jan 2012

Enantioselective Demethylation: The Key To The Nornicotine Enantiomeric Composition In Tobacco Leaf, Bin Cai

Theses and Dissertations--Plant and Soil Sciences

Nicotine and nornicotine are the two main alkaloids that accumulate in Nicotiana tabacum L. (tobacco), and nornicotine is the N-demethylation metabolite of nicotine. Nicotine is synthesized in the root, and probably primarily in the root tip. Both nicotine and nornicotine exist as two isomers that differ from each other by the orientation of H atom at the C-2' position on the pyrrolidine ring. (S)-nicotine is the dominant form in tobacco leaf and the enantiomer fraction of nicotine (EFnic), the fraction of (R)-enantiomer over the total nicotine, is approximately 0.002. Despite considerable efforts to elucidate nicotine and nornicotine …


Conformational Equilibrium Of N-Myristoylated Camp-Dependent Protein Kinase A By Molecular Dynamics Simulations, Alessandro Cembran, Larry R. Masterson, Christopher L. Mcclendon, Susan S. Taylor, Jiali Gao, Gianluigi Veglia Dec 2011

Conformational Equilibrium Of N-Myristoylated Camp-Dependent Protein Kinase A By Molecular Dynamics Simulations, Alessandro Cembran, Larry R. Masterson, Christopher L. Mcclendon, Susan S. Taylor, Jiali Gao, Gianluigi Veglia

Larry Masterson

The catalytic subunit of protein kinase A (PKA-C) is subject to several post- or cotranslational modifications that regulate its activity both spatially and temporally. Among those, N-myristoylation increases the kinase affinity for membranes and might also be implicated in substrate recognition and allosteric regulation. Here, we investigated the effects of N-myristoylation on the structure, dynamics, and conformational equilibrium of PKA-C using atomistic molecular dynamics simulations. We found that the myristoyl group inserts into the hydrophobic pocket and leads to a tighter packing of the A-helix against the core of the enzyme. As a result, the conformational dynamics of the A-helix …