Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemicals and Drugs

University of Kentucky

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 38

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Mechanism Of Antibiotic Permeability Through The Gram-Negative Bacterial Envelope, Olaniyi Alegun Jan 2022

Mechanism Of Antibiotic Permeability Through The Gram-Negative Bacterial Envelope, Olaniyi Alegun

Theses and Dissertations--Chemistry

The outer membrane of Gram-negative bacteria (GN) makes them distinct among superbugs that are associated with the development of antibiotic resistance. The outer membrane, and inner membrane, separated by the periplasm, form a double-membrane barrier to the entry of antibiotics into the cell. Several studies have been conducted to examine the role of outer membrane modifications such as porins, lipopolysaccharides, and efflux pumps on antibiotic resistance. However, there is a paucity of knowledge on how antibiotics behave in the periplasm, to gain access into their target region. My thesis focuses on understanding the mechanism of antibiotic permeability through the cellular …


Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee Jan 2021

Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch and glycogen are an essential component for the majority of species and have been developed to maintain homeostasis in response to environmental changes. Water-soluble glycogen is an excellent source of quick, short-term energy in response to energy demands. In contrast, plants and algae have developed the macromolecule starch that is elegantly suitable for their dependence on external circumstances. Semi-crystalline starch is water-insoluble and inaccessible to most amylolytic enzymes, thus plants and algae have developed a coordinated system so that these enzymes can gain access to the denser starch energy cache. Starch-like semi-crystalline polysaccharides are also found in red algae, …


Itch Nuclear Translocation And H1.2 Polyubiquitination Negatively Regulate The Dna Damage Response, Lufen Chang, Lei Shen, Hu Zhou, Jing Gao, Hangyi Pan, Li Zheng, Brian Armstrong, Yang Peng, Guang Peng, Binhua P. Zhou, Steven T. Rosen, Binghui Shen Jan 2019

Itch Nuclear Translocation And H1.2 Polyubiquitination Negatively Regulate The Dna Damage Response, Lufen Chang, Lei Shen, Hu Zhou, Jing Gao, Hangyi Pan, Li Zheng, Brian Armstrong, Yang Peng, Guang Peng, Binhua P. Zhou, Steven T. Rosen, Binghui Shen

Molecular and Cellular Biochemistry Faculty Publications

The downregulation of the DNA damage response (DDR) enables aggressive tumors to achieve uncontrolled proliferation against replication stress, but the mechanisms underlying this process in tumors are relatively complex. Here, we demonstrate a mechanism through which a distinct E3 ubiquitin ligase, ITCH, modulates DDR machinery in triple-negative breast cancer (TNBC). We found that expression of a nuclear form of ITCH was significantly increased in human TNBC cell lines and tumor specimens. Phosphorylation of ITCH at Ser257 by AKT led to the nuclear localization of ITCH and ubiquitination of H1.2. The ITCH-mediated polyubiquitination of H1.2 suppressed RNF8/RNF168-dependent formation of 53BP1 foci, …


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


Abcg5 And Abcg8: More Than A Defense Against Xenosterols, Shailendra B. Patel, Gregory A. Graf, Ryan E. Temel May 2018

Abcg5 And Abcg8: More Than A Defense Against Xenosterols, Shailendra B. Patel, Gregory A. Graf, Ryan E. Temel

Pharmaceutical Sciences Faculty Publications

The elucidation of the molecular basis of the rare disease, sitosterolemia, has revolutionized our mechanistic understanding of how dietary sterols are excreted and how cholesterol is eliminated from the body. Two proteins, ABCG5 and ABCG8, encoded by the sitosterolemia locus, work as obligate dimers to pump sterols out of hepatocytes and enterocytes. ABCG5/ABCG8 are key in regulating whole-body sterol trafficking, by eliminating sterols via the biliary tree as well as the intestinal tract. Importantly, these transporters keep xenosterols from accumulating in the body. The sitosterolemia locus has been genetically associated with lipid levels and downstream atherosclerotic disease, as well as …


Role Of Protein Charge Density On Hepatitis B Virus Capsid Formation, Xinyu Sun, Dong Li, Zhaoshuai Wang, Panchao Yin, Rundong Hu, Rundong Hu, Hui Li, Qiao Liu, Yunyi Gao, Baiping Ren, Jie Zheng, Yinan Wei, Tianbo Liu Apr 2018

Role Of Protein Charge Density On Hepatitis B Virus Capsid Formation, Xinyu Sun, Dong Li, Zhaoshuai Wang, Panchao Yin, Rundong Hu, Rundong Hu, Hui Li, Qiao Liu, Yunyi Gao, Baiping Ren, Jie Zheng, Yinan Wei, Tianbo Liu

Chemistry Faculty Publications

The role of electrostatic interactions in the viral capsid assembly process was studied by comparing the assembly process of a truncated hepatitis B virus capsid protein Cp149 with its mutant protein D2N/D4N, which has the same conformational structure but four fewer charges per dimer. The capsid protein self-assembly was investigated under a wide range of protein surface charge densities by changing the protein concentration, buffer pH, and solution ionic strength. Lowering the protein charge density favored the capsid formation. However, lowering charge beyond a certain point resulted in capsid aggregation and precipitation. Interestingly, both the wild-type and D2N/D4N mutant displayed …


Transmembrane Domains Of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro, Stacy R. Webb, Stacy E. Smith, Michael G. Fried, Rebecca Ellis Dutch Apr 2018

Transmembrane Domains Of Highly Pathogenic Viral Fusion Proteins Exhibit Trimeric Association In Vitro, Stacy R. Webb, Stacy E. Smith, Michael G. Fried, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Enveloped viruses require viral fusion proteins to promote fusion of the viral envelope with a target cell membrane. To drive fusion, these proteins undergo large conformational changes that must occur at the right place and at the right time. Understanding the elements which control the stability of the prefusion state and the initiation of conformational changes is key to understanding the function of these important proteins. The construction of mutations in the fusion protein transmembrane domains (TMDs) or the replacement of these domains with lipid anchors has implicated the TMD in the fusion process. However, the structural and molecular details …


Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich Mar 2018

Increased Liver Tumor Formation In Neutral Sphingomyelinase-2-Deficient Mice, Liansheng Zhong, Ji Na Kong, Michael B. Dinkins, Silvia Leanhart, Zhihui Zhu, Stefka D. Spassieva, Haiyan Qin, Hsuan-Pei Lin, Ahmed Elsherbini, Rebecca Wang, Xue Jiang, Mariana N. Nikolova‑Karakashian, Guanghu Wang, Erhard Bieberich

Physiology Faculty Publications

Sphingolipids are key signaling lipids in cancer. Genome-wide studies have identified neutral SMase-2 (nSMase2), an enzyme generating ceramide from SM, as a potential repressor for hepatocellular carcinoma. However, little is known about the sphingolipids regulated by nSMase2 and their roles in liver tumor development. We discovered growth of spontaneous liver tumors in 27.3% (9 of 33) of aged male nSMase2-deficient (fro/fro) mice. Lipidomics analysis showed a marked increase of SM in the tumor. Unexpectedly, tumor tissues presented with more than a 7-fold increase of C16-ceramide, concurrent with upregulation of ceramide synthase 5. The fro/fro liver tumor, …


Insulin-Degrading Enzyme Is Not Secreted From Cultured Cells, Eun Suk Song, David W. Rodgers, Louis Hersh Feb 2018

Insulin-Degrading Enzyme Is Not Secreted From Cultured Cells, Eun Suk Song, David W. Rodgers, Louis Hersh

Molecular and Cellular Biochemistry Faculty Publications

Insulin-degrading enzyme (IDE) functions in the catabolism of bioactive peptides. Established roles include degrading insulin and the amyloid beta peptide (Aβ), linking it to diabetes and Alzheimer’s disease. IDE is primarily located in the cytosol, and a longstanding question is how it gains access to its peptide substrates. Reports suggest that IDE secreted by an unconventional pathway participates in extracellular hydrolysis of insulin and Aβ. We find that IDE release from cultured HEK-293 or BV-2 cells represents only ~1% of total cellular IDE, far less than has been reported previously. Importantly, lactate dehydrogenase (LDH) and other cytosolic enzymes are released …


Dynamic Cycling Of T-Snare Acylation Regulates Platelet Exocytosis, Jinchao Zhang, Yunjie Huang, Jing Chen, Haining Zhu, Sidney W. Whiteheart Jan 2018

Dynamic Cycling Of T-Snare Acylation Regulates Platelet Exocytosis, Jinchao Zhang, Yunjie Huang, Jing Chen, Haining Zhu, Sidney W. Whiteheart

Molecular and Cellular Biochemistry Faculty Publications

Platelets regulate vascular integrity by secreting a host of molecules that promote hemostasis and its sequelae. Given the importance of platelet exocytosis, it is critical to understand how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11, lack classical transmembrane domains (TMDs), yet both are associated with platelet membranes and redistributed into cholesterol-dependent lipid rafts when platelets are activated. Using metabolic labeling and hydroxylamine (HA)/HCl treatment, we showed that both contain thioester-linked acyl groups. Mass spectrometry mapping further showed that syntaxin-11 was modified on cysteine 275, 279, 280, 282, 283, and 285, and SNAP-23 was modified on cysteine 79, 80, 83, …


Novel Function Of Ceramide For Regulation Of Mitochondrial Atp Release In Astrocytes, Ji-Na Kong, Zhihui Zhu, Yutaka Itokazu, Guanghu Wang, Michael B. Dinkins, Liansheng Zhong, Hsuan-Pei Lin, Ahmed Elsherbini, Silvia Leanhart, Xue Jiang, Haiyan Qin, Wenbo Zhi, Stefka D. Spassieva, Erhard Bieberich Jan 2018

Novel Function Of Ceramide For Regulation Of Mitochondrial Atp Release In Astrocytes, Ji-Na Kong, Zhihui Zhu, Yutaka Itokazu, Guanghu Wang, Michael B. Dinkins, Liansheng Zhong, Hsuan-Pei Lin, Ahmed Elsherbini, Silvia Leanhart, Xue Jiang, Haiyan Qin, Wenbo Zhi, Stefka D. Spassieva, Erhard Bieberich

Physiology Faculty Publications

We reported that amyloid β peptide (Aβ42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aβ42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine …


Tfpiα Interacts With Fva And Fxa To Inhibit Prothrombinase During The Initiation Of Coagulation, Jeremy P. Wood, Helle H. Petersen, Bingke Yu, Xiaoai Wu, Ida Hilden, Alan E. Mast Dec 2017

Tfpiα Interacts With Fva And Fxa To Inhibit Prothrombinase During The Initiation Of Coagulation, Jeremy P. Wood, Helle H. Petersen, Bingke Yu, Xiaoai Wu, Ida Hilden, Alan E. Mast

Gill Heart & Vascular Institute Faculty Publications

Tissue factor pathway inhibitor α (TFPIα) inhibits prothrombinase, the thrombin-generating complex of factor Xa (FXa) and factor Va (FVa), during the initiation of coagulation. This inhibition requires binding of a conserved basic region within TFPIα to a conserved acidic region in FXa-activated and platelet-released FVa. In this study, the contribution of interactions between TFPIα and the FXa active site and FVa heavy chain to prothrombinase inhibition were examined to further define the inhibitory biochemistry. Removal of FXa active site binding by mutation or by deletion of the second Kunitz domain (K2) of TFPIα produced 17- or 34-fold weaker prothrombinase inhibition, …


Structural And Functional Insights Into The Role Of Bamd And Bame Within The Β-Barrel Assembly Machinery In Neisseria Gonorrhoeae, Aleksandra E. Sikora, Igor H. Wierzbicki, Ryszard A. Zielke, Rachael F. Ryner, Konstantin V. Korotkov, Susan K. Buchanan, Nicholas Noinaj Dec 2017

Structural And Functional Insights Into The Role Of Bamd And Bame Within The Β-Barrel Assembly Machinery In Neisseria Gonorrhoeae, Aleksandra E. Sikora, Igor H. Wierzbicki, Ryszard A. Zielke, Rachael F. Ryner, Konstantin V. Korotkov, Susan K. Buchanan, Nicholas Noinaj

Molecular and Cellular Biochemistry Faculty Publications

The β-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae. The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within …


Transcriptome-Wide Identification Of The Rna-Binding Landscape Of The Chromatin-Associated Protein Parp1 Reveals Functions In Rna Biogenesis, Manana Melikishvili, Julia H. Chariker, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf Nov 2017

Transcriptome-Wide Identification Of The Rna-Binding Landscape Of The Chromatin-Associated Protein Parp1 Reveals Functions In Rna Biogenesis, Manana Melikishvili, Julia H. Chariker, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Recent studies implicate Poly (ADP-ribose) polymerase 1 (PARP1) in alternative splicing regulation, and PARP1 may be an RNA-binding protein. However, detailed knowledge of RNA targets and the RNA-binding region for PARP1 are unknown. Here we report the first global study of PARP1–RNA interactions using PAR–CLIP in HeLa cells. We identified a largely overlapping set of 22 142 PARP1–RNA-binding peaks mapping to mRNAs, with 20 484 sites located in intronic regions. PARP1 preferentially bound RNA containing GC-rich sequences. Using a Bayesian model, we determined positional effects of PARP1 on regulated exon-skipping events: PARP1 binding upstream and downstream of the skipped exons …


Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters Nov 2017

Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters

Chemistry Faculty Publications

Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the …


The Molecular Mechanism Of N-Acetylglucosamine Side-Chain Attachment To The Lancefield Group A Carbohydrate In Streptococcus Pyogenes, Jeffrey Rush, Rebecca J. Edgar, Pan Deng, Jing Chen, Haining Zhu, Nina M. Van Sorge, Andrew J. Morris, Konstantin V. Korotkov, Natalia Korotkova Oct 2017

The Molecular Mechanism Of N-Acetylglucosamine Side-Chain Attachment To The Lancefield Group A Carbohydrate In Streptococcus Pyogenes, Jeffrey Rush, Rebecca J. Edgar, Pan Deng, Jing Chen, Haining Zhu, Nina M. Van Sorge, Andrew J. Morris, Konstantin V. Korotkov, Natalia Korotkova

Molecular and Cellular Biochemistry Faculty Publications

In many Lactobacillales species (i.e. lactic acid bacteria), peptidoglycan is decorated by polyrhamnose polysaccharides that are critical for cell envelope integrity and cell shape and also represent key antigenic determinants. Despite the biological importance of these polysaccharides, their biosynthetic pathways have received limited attention. The important human pathogen, Streptococcus pyogenes, synthesizes a key antigenic surface polymer, the Lancefield group A carbohydrate (GAC). GAC is covalently attached to peptidoglycan and consists of a polyrhamnose polymer, with N-acetylglucosamine (GlcNAc) side chains, which is an essential virulence determinant. The molecular details of the mechanism of polyrhamnose modification with GlcNAc are …


Structural Basis For Earp-Mediated Arginine Glycosylation Of Translation Elongation Factor Ef-P, Ralph Krafczyk, Jakub Macošek, Pravin Kumar Ankush Jagtap, Daniel Gast, Swetlana Wunder, Prithiba Mitra, Amit Kumar Jha, Jürgen Rohr, Anja Hoffmann-Röder, Kirsten Jung, Janosch Hennig, Jürgen Lassak Sep 2017

Structural Basis For Earp-Mediated Arginine Glycosylation Of Translation Elongation Factor Ef-P, Ralph Krafczyk, Jakub Macošek, Pravin Kumar Ankush Jagtap, Daniel Gast, Swetlana Wunder, Prithiba Mitra, Amit Kumar Jha, Jürgen Rohr, Anja Hoffmann-Röder, Kirsten Jung, Janosch Hennig, Jürgen Lassak

Pharmaceutical Sciences Faculty Publications

Glycosylation is a universal strategy to posttranslationally modify proteins. The recently discovered arginine rhamnosylation activates the polyproline-specific bacterial translation elongation factor EF-P. EF-P is rhamnosylated on arginine 32 by the glycosyltransferase EarP. However, the enzymatic mechanism remains elusive. In the present study, we solved the crystal structure of EarP from Pseudomonas putida. The enzyme is composed of two opposing domains with Rossmann folds, thus constituting a B pattern-type glycosyltransferase (GT-B). While dTDP-β-L-rhamnose is located within a highly conserved pocket of the C-domain, EarP recognizes the KOW-like N-domain of EF-P. Based on our data, we propose a structural model for …


Improving The Thermal Stability Of Cellobiohydrolase Cel7a From Hypocrea Jecorina By Directed Evolution, Frits Goedegebuur, Lydia Dankmeyer, Peter Gualfetti, Saeid Karkehabadi, Henrik Hansson, Suvamay Jana, Vicky Huynh, Bradley R. Kelemen, Paulien Kruithof, Edmund A. Larenas, Pauline J. M. Teunissen, Jerry Ståhlberg, Christina M. Payne, Colin Mitchinson, Mats Sandgren Aug 2017

Improving The Thermal Stability Of Cellobiohydrolase Cel7a From Hypocrea Jecorina By Directed Evolution, Frits Goedegebuur, Lydia Dankmeyer, Peter Gualfetti, Saeid Karkehabadi, Henrik Hansson, Suvamay Jana, Vicky Huynh, Bradley R. Kelemen, Paulien Kruithof, Edmund A. Larenas, Pauline J. M. Teunissen, Jerry Ståhlberg, Christina M. Payne, Colin Mitchinson, Mats Sandgren

Chemical and Materials Engineering Faculty Publications

Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 °C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and …


Peptide Inhibitors Targeting The Neisseria Gonorrhoeae Pivotal Anaerobic Respiration Factor Ania, Aleksandra E. Sikora, Robert H. Mills, Jacob V. Weber, Adel Hamza, Bryan W. Passow, Andrew Romaine, Zachary A. Williamson, Robert W. Reed, Ryszard A. Zielke, Konstantin V. Korotkov Aug 2017

Peptide Inhibitors Targeting The Neisseria Gonorrhoeae Pivotal Anaerobic Respiration Factor Ania, Aleksandra E. Sikora, Robert H. Mills, Jacob V. Weber, Adel Hamza, Bryan W. Passow, Andrew Romaine, Zachary A. Williamson, Robert W. Reed, Ryszard A. Zielke, Konstantin V. Korotkov

Molecular and Cellular Biochemistry Faculty Publications

Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, which is highly prevalent worldwide and has a major impact on reproductive and neonatal health. The superbug status of N. gonorrhoeae necessitates the development of drugs with different mechanisms of action. Here, we focused on targeting the nitrite reductase AniA, which is a pivotal component of N. gonorrhoeae anaerobic respiration and biofilm formation. Our studies showed that gonococci expressing AniA containing the altered catalytic residues D137A and H280A failed to grow under anaerobic conditions, demonstrating that the nitrite reductase function is essential. To facilitate the pharmacological targeting of AniA, new crystal structures …


Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi Jul 2017

Chloroformate Derivatization For Tracing The Fate Of Amino Acids In Cells And Tissues By Multiple Stable Isotope Resolved Metabolomics (Msirm), Ye Yang, Teresa W. -M. Fan, Andrew N. Lane, Richard M. Higashi

Center for Environmental and Systems Biochemistry Faculty Publications

Amino acids have crucial roles in central metabolism, both anabolic and catabolic. To elucidate these roles, steady-state concentrations of amino acids alone are insufficient, as each amino acid participates in multiple pathways and functions in a complex network, which can also be compartmentalized. Stable Isotope-Resolved Metabolomics (SIRM) is an approach that uses atom-resolved tracking of metabolites through biochemical transformations in cells, tissues, or whole organisms. Using different elemental stable isotopes to label multiple metabolite precursors makes it possible to resolve simultaneously the utilization of these precursors in a single experiment. Conversely, a single precursor labeled with two (or more) different …


Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried Jul 2017

Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary structure and twist on protein–protein interactions in cooperative AGT complexes formed on lesion-free DNAs that model the unmodified parts of the genome. We used a new approach to resolve nearest neighbor (nn) and long-range (lr) components from the ensemble-average cooperativity, ωave. We found …


The Foxo Transcription Factor Controls Insect Growth And Development By Regulating Juvenile Hormone Degradation In The Silkworm, Bombyx Mori, Baosheng Zeng, Yuping Huang, Jun Xu, Takahiro Shiotsuki, Hua Bai, Subba Reddy Palli, Yongping Huang, Anjiang Tan May 2017

The Foxo Transcription Factor Controls Insect Growth And Development By Regulating Juvenile Hormone Degradation In The Silkworm, Bombyx Mori, Baosheng Zeng, Yuping Huang, Jun Xu, Takahiro Shiotsuki, Hua Bai, Subba Reddy Palli, Yongping Huang, Anjiang Tan

Entomology Faculty Publications

Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO (BmFOXO) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather …


Microarray Dataset Of Transient And Permanent Dna Methylation Changes In Hela Cells Undergoing Inorganic Arsenic-Mediated Epithelial-To-Mesenchymal Transition, Meredith Eckstein, Matthew Rea, Yvonne N. Fondufe-Mittendorf May 2017

Microarray Dataset Of Transient And Permanent Dna Methylation Changes In Hela Cells Undergoing Inorganic Arsenic-Mediated Epithelial-To-Mesenchymal Transition, Meredith Eckstein, Matthew Rea, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

The novel dataset presented here represents the results of the changing pattern of DNA methylation profiles in HeLa cells exposed to chronic low dose (0.5 µM) sodium arsenite, resulting in epithelial-to-mesenchymal transition, as well as DNA methylation patterns in cells where inorganic arsenic has been removed. Inorganic arsenic is a known carcinogen, though not mutagenic. Several mechanisms have been proposed as to how inorganic arsenic drives carcinogenesis such as regulation of the cell׳s redox potential and/or epigenetics. In fact, there are gene specific studies and limited genome-wide studies that have implicated epigenetic factors such as DNA methylation in inorganic arsenic-mediated …


Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski Apr 2017

Melatonin And Its Metabolites Protect Human Melanocytes Against Uvb-Induced Damage: Involvement Of Nrf2-Mediated Pathways, Zorica Janjetovic, Stuart G. Jarrett, Elizabeth F. Lee, Cory Duprey, Russel J. Reiter, Andrzej T. Slominski

Toxicology and Cancer Biology Faculty Publications

Ultraviolet light (UV) is an inducer of reactive oxygen species (ROS) as well as 6-4-photoproducts and cyclobutane pyrimidine dimers (CPD) in the skin, which further cause damage to the skin cells. Irradiation of cultured human melanocytes with UVB stimulated ROS production, which was reduced in cells treated with melatonin or its metabolites: 6-hydroxymelatonin (6-OHM), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), N-acetylserotonin (NAS), and 5-methoxytryptamine (5-MT). Melatonin and its derivatives also stimulated the expression of NRF2 (nuclear factor erythroid 2 [NF-E2]-related factor 2) and its target enzymes and proteins that play an important role in cell protection from different damaging factors including UVB. Silencing …


Aberrant Coordination Geometries Discovered In The Most Abundant Metalloproteins, Sen Yao, Robert M. Flight, Eric C. Rouchka, Hunter N. B. Moseley Mar 2017

Aberrant Coordination Geometries Discovered In The Most Abundant Metalloproteins, Sen Yao, Robert M. Flight, Eric C. Rouchka, Hunter N. B. Moseley

Molecular and Cellular Biochemistry Faculty Publications

Metalloproteins bind and utilize metal ions for a variety of biological purposes. Due to the ubiquity of metalloprotein involvement throughout these processes across all domains of life, how proteins coordinate metal ions for different biochemical functions is of great relevance to understanding the implementation of these biological processes. Toward these ends, we have improved our methodology for structurally and functionally characterizing metal binding sites in metalloproteins. Our new ligand detection method is statistically much more robust, producing estimated false positive and false negative rates of ∼0.11% and ∼1.2%, respectively. Additional improvements expand both the range of metal ions and their …


Epigenomic Reprogramming In Inorganic Arsenic-Mediated Gene Expression Patterns During Carcinogenesis, Meredith Eckstein, Rebekah Eleazer, Matthew Rea, Yvonne N. Fondufe-Mittendorf Mar 2017

Epigenomic Reprogramming In Inorganic Arsenic-Mediated Gene Expression Patterns During Carcinogenesis, Meredith Eckstein, Rebekah Eleazer, Matthew Rea, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Arsenic is a ubiquitous metalloid that is not mutagenic but is carcinogenic. The mechanism(s) by which arsenic causes cancer remain unknown. To date, several mechanisms have been proposed, including the arsenic-induced generation of reactive oxygen species (ROS). However, it is also becoming evident that inorganic arsenic (iAs) may exert its carcinogenic effects by changing the epigenome, and thereby modifying chromatin structure and dynamics. These epigenetic changes alter the accessibility of gene regulatory factors to DNA, resulting in specific changes in gene expression both at the levels of transcription initiation and gene splicing. In this review, we discuss recent literature reports …


Hendra Virus Fusion Protein Transmembrane Domain Contributes To Pre-Fusion Protein Stability, Stacy Webb, Tamas Nagy, Hunter Moseley, Michael G. Fried, Rebecca Ellis Dutch Feb 2017

Hendra Virus Fusion Protein Transmembrane Domain Contributes To Pre-Fusion Protein Stability, Stacy Webb, Tamas Nagy, Hunter Moseley, Michael G. Fried, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Enveloped viruses utilize fusion (F) proteins studding the surface of the virus to facilitate membrane fusion with a target cell membrane. Fusion of the viral envelope with a cellular membrane is required for release of viral genomic material, so the virus can ultimately reproduce and spread. To drive fusion, the F protein undergoes an irreversible conformational change, transitioning from a metastable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements that control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Mutations in F protein transmembrane (TM) domains …


Dual-Functional-Tag-Facilitated Protein Labeling And Immobilization, Xinyi Zhang, Wei Lu, Kevin Kwan, Dibakar Bhattacharyya, Yinan Wei Feb 2017

Dual-Functional-Tag-Facilitated Protein Labeling And Immobilization, Xinyi Zhang, Wei Lu, Kevin Kwan, Dibakar Bhattacharyya, Yinan Wei

Chemistry Faculty Publications

An important strategy in the construction of biomimetic membranes and devices is to use natural proteins as the functional components for incorporation in a polymeric or nanocomposite matrix. Toward this goal, an important step is to immobilize proteins with high efficiency and precision without disrupting the protein function. Here, we developed a dual-functional tag containing histidine and the non-natural amino acid azidohomoalanine (AHA). AHA is metabolically incorporated into the protein, taking advantage of the Met-tRNA and Met-tRNA synthetase. Histidine in the tag can facilitate metal-affinity purification, whereas AHA can react with an alkyne-functionalized probe or surface via well-established click chemistry. …


Genome-Wide Dna Methylation Reprogramming In Response To Inorganic Arsenic Links Inhibition Of Ctcf Binding, Dnmt Expression And Cellular Transformation, Matthew Rea, Meredith Eckstein, Rebekah Eleazer, Caroline Smith, Yvonne N. Fondufe-Mittendorf Feb 2017

Genome-Wide Dna Methylation Reprogramming In Response To Inorganic Arsenic Links Inhibition Of Ctcf Binding, Dnmt Expression And Cellular Transformation, Matthew Rea, Meredith Eckstein, Rebekah Eleazer, Caroline Smith, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. …


Inhibition Of Mammalian Glycoprotein Ykl-40 Identification Of The Physiological Ligand, Abhishek A. Kognole, Christina M. Payne Jan 2017

Inhibition Of Mammalian Glycoprotein Ykl-40 Identification Of The Physiological Ligand, Abhishek A. Kognole, Christina M. Payne

Chemical and Materials Engineering Faculty Publications

YKL-40 is a mammalian glycoprotein associated with progression, severity, and prognosis of chronic inflammatory diseases and a multitude of cancers. Despite this well documented association, identification of the lectin′s physiological ligand and, accordingly, biological function has proven experimentally difficult. YKL-40 has been shown to bind chito-oligosaccharides; however, the production of chitin by the human body has not yet been documented. Possible alternative ligands include proteoglycans, polysaccharides, and fibers like collagen, all of which makeup the extracellular matrix. It is likely that YKL-40 is interacting with these alternative polysaccharides or proteins within the body, extending its function to cell biological roles …