Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Mutation

External Link

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros Oct 2015

Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros

Victor R. Ambros

Why do many microRNA gene mutants display no evident phenotype? Multiply mutant worms that are selectively impaired in genetic regulatory network activities have been used to uncover previously unknown functions for numerous Caenorhabditis elegans microRNAs.


Guanosine Diphosphatase Is Required For Protein And Sphingolipid Glycosylation In The Golgi Lumen Of Saccharomyces Cerevisiae, Claudia Abeijon, Ken Yanagisawa, Elisabet Mandon, Alex Hausler, Kelley Moremen, Carlos Hirschberg, Phillips Robbins Feb 2012

Guanosine Diphosphatase Is Required For Protein And Sphingolipid Glycosylation In The Golgi Lumen Of Saccharomyces Cerevisiae, Claudia Abeijon, Ken Yanagisawa, Elisabet Mandon, Alex Hausler, Kelley Moremen, Carlos Hirschberg, Phillips Robbins

Elisabet Mandon

Current models for nucleotide sugar use in the Golgi apparatus predict a critical role for the lumenal nucleoside diphosphatase. After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol. To test this model, we cloned the gene for the S. cerevisiae guanosine diphosphatase and constructed a null mutation. This mutation should reduce the concentrations of GDP-mannose and GMP and increase the concentration of GDP in the Golgi lumen. The alterations should in turn …


Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross Nov 2011

Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross

Celia A. Schiffer

Despite much evidence for phosphatidylinositol phosphate (PIP)-triggered signaling pathways in the nucleus, there is little understanding of how the levels and activities of these proteins are regulated. As a first step to elucidating this problem, we determined whether phosphatase and tensin homolog deleted on chromosome 10 (PTEN) enters the nucleus by passive diffusion or active transport. We expressed various PTEN fusion proteins in tsBN2, HeLa, LNCaP, and U87MG cells and determined that the largest PTEN fusion proteins showed little or no nuclear localization. Because diffusion through nuclear pores is limited to proteins of 60,000 Da or less, this suggests that …