Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Carbohydrate-Based Inducers Of Cellular Stress For Targeting Cancer Cell Metabolism, Fidelis Ndombera Jan 2018

Carbohydrate-Based Inducers Of Cellular Stress For Targeting Cancer Cell Metabolism, Fidelis Ndombera

Wayne State University Dissertations

ABSTRACT

CARBOHYDRATE-BASED INDUCERS OF CELLULAR STRESS FOR TARGETING CANCER CELL METABOLISM

by

FIDELIS TOLOYI NDOMBERA

May 2018

Advisor: Dr. Young-Hoon Ahn

Major: Chemistry (Biochemistry)

Degree: Doctor of Philosophy

Metabolic reprogramming and redox control of cancer cells is vital for their proliferation, but also provides selective strategies for treating cancer. Increased generation of reactive oxygen species (ROS) and an intricate control of redox status in cancer cells relative to normal cells provide a basis for designing ROS-inducing anticancer agents. In my work, I designed, synthesized and evaluated carbohydrate-based small molecules for ROS-generation, cytotoxicity and redox signaling and stress response. Our data …


Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas Jan 2018

Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas

Bioelectrics Publications

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 "orchestrates" the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho-cofilin. 17AAG treatment …