Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

2015

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 143

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya Dec 2015

The Role Of Bone Sialoprotein In Periodontal Tissue Development And Bone Repair, Yohannes Soenjaya

Electronic Thesis and Dissertation Repository

Bone development and repair involve complex processes that include interaction between cells and their surrounding matrix. In the body, bone sialoprotein (BSP) expression is up-regulated at the onset of mineralization. BSP is a multifunctional acidic phosphoprotein with collagen-binding, hydroxyapatite nucleating, and integrin recognition (RGD sequence, which is important for cell-attachment and signaling) regions. Mice lacking BSP expression (Bsp-/-), exhibit a bone phenotype with reductions in bone mineral density, bone length, osteoclast activation, and impaired bone healing. This thesis examined the role of BSP in tooth development and also its potential use as a therapeutic reagent for bone …


Hd2d Is A Regulator Of Abscisic Acid Responses In Arabidopsis, Joshua A. Farhi Dec 2015

Hd2d Is A Regulator Of Abscisic Acid Responses In Arabidopsis, Joshua A. Farhi

Electronic Thesis and Dissertation Repository

Histone deacetylases have important roles in development and stress response in plants. To further investigate their function, the HD2D gene, of the plant specific HD2 family, was studied. An hd2d-1 mutant and two HD2D overexpression lines were used in this study. Germination was delayed in hd2d-1 and HD2D overexpression seeds only in the presence of ABA. HD2D was found to positively regulate the expression of members of the ABA-response pathway (ABI1, ABI5, and RD29A) leading to increased resistance to drought and salinity treatments. Furthermore, HD2D expression delayed flowering by positively regulating FLC expression. Using bimolecular fluorescence complementation, the HD2D protein …


Preventing Thymus Involution In K5.Cyclin D1 Transgenic Mice Sustains The Naïve T Cell Compartment With Age, Michelle L. Bolner Dec 2015

Preventing Thymus Involution In K5.Cyclin D1 Transgenic Mice Sustains The Naïve T Cell Compartment With Age, Michelle L. Bolner

Dissertations & Theses (Open Access)

The thymus maintains T cell receptor (TCR) repertoire diversity through perpetual release of self-MHC restricted naive T cells. However, thymus involution during the aging process reduces naïve T cell output, leading to defective immune responsiveness to newly encountered antigens. We have found that early thymus involution precipitates the age-associated shift favoring memory T cell dominancy in young control mice. Furthermore, we have shown that age-related thymus involution is prevented in mice expressing a keratin 5 promoter-driven Cyclin D1 (K5.D1) transgene in thymic epithelial cells (TECs). Thymopoiesis occurs normally in K5.D1 transgenic thymi and sustains T cell output to prevent the …


A Synthetic Porcine Reproductive And Respiratory Syndrome Virus Strain Confers Unprecedented Levels Of Heterologous Protection, Hiep Vu, Fangrui Ma, William W. Laegreid, Asit K. Pattnaik, David Steffen, Alan R. Doster, Fernando Osorio Dec 2015

A Synthetic Porcine Reproductive And Respiratory Syndrome Virus Strain Confers Unprecedented Levels Of Heterologous Protection, Hiep Vu, Fangrui Ma, William W. Laegreid, Asit K. Pattnaik, David Steffen, Alan R. Doster, Fernando Osorio

School of Veterinary and Biomedical Sciences: Faculty Publications

Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. By using a set of 59 nonredundant, full-genome sequences of type 2 PRRSVs, a consensus genome (designated PRRSV-CON) was generated by aligning these 59 PRRSV full-genome sequences, followed by selecting the most common nucleotide found at each position of the alignment. Next, the …


The Tumor Suppressor Notch Inhibits Head And Neck Squamous Cell Carcinoma (Hnscc) Tumor Growth And Progression By Modulating Proto-Oncogenes Axl And Ctnnal1 (Α-Catulin), Shhyam Moorthy, Shhyam Moorthy Dec 2015

The Tumor Suppressor Notch Inhibits Head And Neck Squamous Cell Carcinoma (Hnscc) Tumor Growth And Progression By Modulating Proto-Oncogenes Axl And Ctnnal1 (Α-Catulin), Shhyam Moorthy, Shhyam Moorthy

Dissertations & Theses (Open Access)

Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common malignancy worldwide, with roughly 300,000 cancer related deaths occurring globally each year. The survival of patients with HNSCC has not changed significantly over the past decade, leading investigators to search for promising molecular targets. To identify new treatment targets and biomarkers that could better guide therapy, we previously characterized the genomic alterations from primary HNSCC patient samples. We were among the first to discover that NOTCH1 is one of the most frequently mutated genes in this cancer type. The spectrum of inactivating NOTCH1 mutations in HNSCC suggested …


Response Of Bacterial Cells To Fluctuating Environment, Sudip Nepal Dec 2015

Response Of Bacterial Cells To Fluctuating Environment, Sudip Nepal

Graduate Theses and Dissertations

We have studied morphological and genomic variations occurring in a mesophilic bacterium Escherichia coli (E. coli) in a wide range of continuous and fluctuating hydrostatic pressures. For all the studies here the temperature is maintained at 37◦C, the optimal growth tem- perature of E. coli at atmospheric pressure. Cell division is inhibited at high hydrostatic pressures resulting in an increase of cell length. The increase of cell-length depends on the extent and duration of the stress applied on bacterial cells. We have studied the effect of high pressure stress in three different conditions – (i) Wild-type cells (almost no genetic …


The Neurobiology Of Circadian Rhythms, Patricia J. Sollars, Gary E. Pickard Dec 2015

The Neurobiology Of Circadian Rhythms, Patricia J. Sollars, Gary E. Pickard

School of Veterinary and Biomedical Sciences: Faculty Publications

Daily rhythms in nature, such as the opening and closing of flowers or our patterns of sleep and wakefulness and their association with the perpetual alteration of night and day, were recognized in antiquity although their origins were not questioned until the eighteenth century. The French Astronomer Jean-Jacques d’Ortous de Mairan conducted an investigation into whether the leaves of the Mimosa plant opened in response to light.1 While de Mairan’s experiments were the first to question the origin of such daily rhythms, Augustin Pyramus de Candolle is credited with the first suggestion that they arose through an internal timekeeping …


Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao Dec 2015

Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao

Dissertations & Theses (Open Access)

Background: Calcification occurs often in the atherosclerotic lesions of patients with coronary heart disease and animals with hypercholesterolemia, such as apolipoprotein-E deficient (ApoE-/-) mice. However, the mechanism(s) underlying the development of calcification in atherosclerosis remains unclear. ApoE acts as a lipid transporter, but also has been recognized as a potential regulator of osteogenesis. Little information is available as to whether ApoE has any direct impact on osteogenesis and calcification in vascular smooth muscle cells (VSMC). Several signal transduction pathways play a role in regulation of calcification, including the Wnt/β-catenin system and potentially GTAP, an ubiquitin-conjugating enzyme responsible for protein …


Leptin Regulates The Expression Of Autophagy-Related Genes In Chickens, Peter Olawale Ishola Dec 2015

Leptin Regulates The Expression Of Autophagy-Related Genes In Chickens, Peter Olawale Ishola

Graduate Theses and Dissertations

Autophagy or cellular self-digestion, a lysosomal degradation pathway that is conserved from yeast to human, plays a key role in recycling cellular constituents, including damaged organelles. It also plays a pivotal role in the adaptation of cells to a plethora of distinct stressors including starvation. Autophagy has been extensively studied in mammals and yeast, but little is known in avian species. Thus, the major objective of the present study was to determine the effects of leptin on autophagy-related genes in chicken hypothalamus, muscle and liver. Leptin is an adipocytokine that is mostly produced by white adipose cells in mammals (as …


Transcriptomics Of Chicken Primordial Germ Cells, Nhung Thi Nguyen Dec 2015

Transcriptomics Of Chicken Primordial Germ Cells, Nhung Thi Nguyen

Graduate Theses and Dissertations

Chicken primordial germ cells (PGCs) are derived from extraembryonic tissue of the embryo and first appear at stage X of development. They enter the bloodstream and migrate to the genital ridge, unite with somatic tissue to form a developing gonad, and then differentiate to sperm or ova (Fujimoto et al., 1976). Understanding molecular features of both male and female PGCs not only clarify the differentiation mechanism of such cells toward different germ lines, but will also help in selecting for highly productive types of commercial chicken. Most previous studies focused on the location of PGCs (Eyal-Giladi et al., 1981; Swift …


Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

Dissertations & Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and …


Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker Nov 2015

Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that …


Hepatic Nutrient And Hormonal Regulation Of The Pancreatic-Derived Factor (Pander) Promoter, Whitney Ratliff Nov 2015

Hepatic Nutrient And Hormonal Regulation Of The Pancreatic-Derived Factor (Pander) Promoter, Whitney Ratliff

USF Tampa Graduate Theses and Dissertations

PANcreatic-DERived factor (PANDER, FAM3B) has been shown to regulate glycemic levels via interactions with both pancreatic islets and the liver. Although PANDER is predominantly expressed from the endocrine pancreas, recent work has provided sufficient evidence that the liver may also be an additional tissue source of PANDER production. At physiological levels, PANDER is capable of disrupting insulin signaling and promoting increased hepatic glucose production. As shown in some animal models, strong expression of PANDER, induced by viral delivery within the liver, induces hepatic steatosis. However, no studies to date have explicitly characterized the transcriptional regulation of PANDER from the liver. …


Mcnamara 201412 Nih Scap Innocentive Challenge Solution - T-Bow Rainbow T-Cells And Tumor Cells Spatial Multiplexing Gene Expression Reporter System – Plus Supplement Plus Posters - 20151027 - Please Download "75" Instead, George Mcnamara Oct 2015

Mcnamara 201412 Nih Scap Innocentive Challenge Solution - T-Bow Rainbow T-Cells And Tumor Cells Spatial Multiplexing Gene Expression Reporter System – Plus Supplement Plus Posters - 20151027 - Please Download "75" Instead, George Mcnamara

George McNamara

McNamara 201412 NIH SCAP InnoCentive Challenge Solution - T-Bow Rainbow T-cells and Tumor Cells Spatial Multiplexing Gene Expression Reporter System – plus supplement plus posters - 20151027.

///

Please download the current 20151027 (October 27, 2015) Tattletales and T-Bow update from

http://works.bepress.com/gmcnamara/75/

The bepress web site is not letting me replace the old pdf here at "65" with the additional 10 pages update.

///

The download is my/Cooper lab solution (submission) to the 2014 NIH Single Cell Analysis Program (SCAP) InnoCentive Challenge, "Follow That Cell". I submitted the Solution on 20141215Mon (with 20 minutes to spare). The Challenge web page …


Tattletales And T-Bow Update 20151027tue, George Mcnamara Oct 2015

Tattletales And T-Bow Update 20151027tue, George Mcnamara

George McNamara

20151027Tue this "75"

http://works.bepress.com/gmcnamara/75

is my update of "65" posting

See text at

http://works.bepress.com/gmcnamara/65/

for text summary. The PDf here in "75" supersedes "65".

The PDF here has 10 pages added to the end from the "65" version (pages 40-49 of PDF when including the bepress cover page)..

here is the text in my cover page (bepress may add its own cover):

20151027Tue: added 10 page e-poster at bottom explaining Binary Tattletales and T-Bow. That is, binary with respect to protein components. For one color (number of repeats, epitope tags, FPs are examples, here rounded to convenient numbers):

1. 100 …


Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder Oct 2015

Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder

Sean P. Ryder

Maternally supplied mRNAs encode proteins that pattern early embryos in many species. In the nematode Caenorhabditis elegans, a suite of RNA-binding proteins regulates expression of maternal mRNAs during oogenesis, the oocyte to embryo transition, and early embryogenesis. To understand how these RNA-binding proteins contribute to development, it is necessary to determine how they select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant proteins required for oocyte maturation--an essential part of meiosis that prepares oocytes for fertilization. Both proteins have CCCH type tandem zinc finger RNA-binding domains. Here, we define the RNA binding specificity of OMA-1 and demonstrate that …


The Generation, Exploitation And Future Of Induced Pluripotent Stem Cells, Jacob Steenwyk Oct 2015

The Generation, Exploitation And Future Of Induced Pluripotent Stem Cells, Jacob Steenwyk

Scholarly Undergraduate Research Journal at Clark (SURJ)

The foundational advancements of John Gurdon and Shinya Yamanaka have improved understanding of dedifferen- tiation of cells to a pluripotent state. The seminal discovery established a novel system to study disease pathogenesis, drug screening, and toxicity, as well as sprouted the new field of regenerative medicine. In this article, the method- ology to obtain dedifferentiated cells, known as induced pluripotent stem (iPS) cells, subsequent validation, and application of which are reviewed. The experiments investigated here aim to demonstrate the capacity of iPS cells to replace the ethically-gray human embryonic cells by developing human livers and viable, healthy animals. It is …


Dynamic Ubiquitination Drives Herpesvirus Neuroinvasion, Nicholas J. Huffmaster, Patricia J. Sollars, Alexsia L. Richards, Gary E. Pickard, Gregory A. Smith Oct 2015

Dynamic Ubiquitination Drives Herpesvirus Neuroinvasion, Nicholas J. Huffmaster, Patricia J. Sollars, Alexsia L. Richards, Gary E. Pickard, Gregory A. Smith

School of Veterinary and Biomedical Sciences: Faculty Publications

Neuroinvasive herpesviruses display a remarkable propensity to enter the nervous system of healthy individuals in the absence of obvious trauma at the site of inoculation. We document a repurposing of cellular ubiquitin during infection to switch the virus between two invasive states. The states act sequentially to defeat consecutive host barriers of the peripheral nervous system and together promote the potent neuroinvasive phenotype. The first state directs virus access to nerve endings in peripheral tissue, whereas the second delivers virus particles within nerve fibers to the neural ganglia. Mutant viruses locked in either state remain competent to overcome the corresponding …


Characterization And Diurnal Measurement Of Oral Inflammation In Association With Glycemic Control, Periodontal Status, & Glucose Stimulation, Melanie N. Kuehl Oct 2015

Characterization And Diurnal Measurement Of Oral Inflammation In Association With Glycemic Control, Periodontal Status, & Glucose Stimulation, Melanie N. Kuehl

USF Tampa Graduate Theses and Dissertations

Diabetes has afflicted 8.3%, approximately 25.8 million, of the United States population and is the seventh leading cause of death [1]. Type I diabetes (T1D) accounts for 5 to 10% of all diagnosed cases of diabetes in the United States [2]. If present trends continue, the rate of T1D incidence among children under the age of 14 will increase by 3% globally [3]. T1D is an autoimmune disorder in which the β-cells of the pancreatic islets are destroyed, leading to high blood sugar. Hyperglycemia and loss of immunological tolerance to self-antigens are common associations of T1D [4]. Periodontal disease impacts …


Cladribine Analogues Via O6-(Benzotriazolyl) Derivatives Of Guanine Nucleosides, Sakilam Satishkumar, Prasanna K. Vuram, Siva Subrahmanyam Relangi, Venkateshwarlu Gurram, Hong Zhou, Robert J. Kreitman, Michelle M. Martínez Montemayor, Lijia Yang, Muralidharan Kaliyaperumal, Somesh Sharma, Narender Pottabathini, Mahesh K. Lakshman Oct 2015

Cladribine Analogues Via O6-(Benzotriazolyl) Derivatives Of Guanine Nucleosides, Sakilam Satishkumar, Prasanna K. Vuram, Siva Subrahmanyam Relangi, Venkateshwarlu Gurram, Hong Zhou, Robert J. Kreitman, Michelle M. Martínez Montemayor, Lijia Yang, Muralidharan Kaliyaperumal, Somesh Sharma, Narender Pottabathini, Mahesh K. Lakshman

Publications and Research

Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest in the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities, and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL) and chronic lymphocytic …


Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams Oct 2015

Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams

Journal of the South Carolina Academy of Science

Despite the significant impacts on human health caused by neurodegeneration, our understanding of the degeneration process is incomplete. The nematode Caenorhabditis elegans is emerging as a genetic model organism well suited for identification of conserved cellular mechanisms and molecular pathways of neurodegeneration. Studies in the worm have identified factors that contribute to neurodegeneration, including excitotoxicity and stress due to reactive oxygen species (ROS). Disruption of the gene unc-68, which encodes the ryanodine receptor, abolishes excitotoxic cell death, indicating a role for calcium (Ca2+) signaling in neurodegeneration. We tested the requirement for unc-68 in ROS-mediated neurodegeneration using the …


Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros

Victor R. Ambros

MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant …


Control Of Stem Cell Self-Renewal And Differentiation By The Heterochronic Genes And The Cellular Asymmetry Machinery In Caenorhabditis Elegans, Omid F. Harandi, Victor Ambros Oct 2015

Control Of Stem Cell Self-Renewal And Differentiation By The Heterochronic Genes And The Cellular Asymmetry Machinery In Caenorhabditis Elegans, Omid F. Harandi, Victor Ambros

Victor R. Ambros

Transitions between asymmetric (self-renewing) and symmetric (proliferative) cell divisions are robustly regulated in the context of normal development and tissue homeostasis. To genetically assess the regulation of these transitions, we used the postembryonic epithelial stem (seam) cell lineages of Caenorhabditis elegans. In these lineages, the timing of these transitions is regulated by the evolutionarily conserved heterochronic pathway, whereas cell division asymmetry is conferred by a pathway consisting of Wnt (Wingless) pathway components, including posterior pharynx defect (POP-1)/TCF, APC related/adenomatosis polyposis coli (APR-1)/APC, and LIT-1/NLK (loss of intestine/Nemo-like kinase). Here we explore the genetic regulatory mechanisms underlying stage-specific transitions between self-renewing …


Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang Oct 2015

Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang

Victor R. Ambros

Like mammalian neurons, Caenorhabditis elegans neurons lose axon regeneration ability as they age, but it is not known why. Here, we report that let-7 contributes to a developmental decline in anterior ventral microtubule (AVM) axon regeneration. In older AVM axons, let-7 inhibits regeneration by down-regulating LIN-41, an important AVM axon regeneration-promoting factor. Whereas let-7 inhibits lin-41 expression in older neurons through the lin-41 3' untranslated region, lin-41 inhibits let-7 expression in younger neurons through Argonaute ALG-1. This reciprocal inhibition ensures that axon regeneration is inhibited only in older neurons. These findings show that a let-7-lin-41 regulatory circuit, which was previously …


The Evolution Of Our Thinking About Micrornas, Victor Ambros Oct 2015

The Evolution Of Our Thinking About Micrornas, Victor Ambros

Victor R. Ambros

Our appreciation of the significance of microRNAs to biology at large continues to be an evolving process.


Victor Ambros: The Broad Scope Of Micrornas. Interview By Caitlin Sedwick, Victor R. Ambros Oct 2015

Victor Ambros: The Broad Scope Of Micrornas. Interview By Caitlin Sedwick, Victor R. Ambros

Victor R. Ambros

Interview with Victor Ambros, who studies how microRNAs impact development.


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros Oct 2015

The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between …


Mir-14 Regulates Autophagy During Developmental Cell Death By Targeting Ip3-Kinase 2, Charles Nelson, Victor Ambros, Eric Baehrecke Oct 2015

Mir-14 Regulates Autophagy During Developmental Cell Death By Targeting Ip3-Kinase 2, Charles Nelson, Victor Ambros, Eric Baehrecke

Victor R. Ambros

Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in …


Micrornas And Developmental Timing, Victor Ambros Oct 2015

Micrornas And Developmental Timing, Victor Ambros

Victor R. Ambros

MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.