Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

2014

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 111

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Epigenetic Regulation Of Nuclear Hormone Receptor Dax-1, Michael B. Heskett Dec 2014

Epigenetic Regulation Of Nuclear Hormone Receptor Dax-1, Michael B. Heskett

Master's Theses

DAX-1 (NR0B1) is an orphan nuclear receptor that plays a key role in the development and maintenance of steroidogenic tissue in mammals. Dax-1 is also expressed in mouse embryonic stem (ES) cells and is required to maintain pluripotency. Duplication of the X-chromosome in the region containing the NR0B1 gene results in sex reversal, and mutations in NR0B1 cause adrenal hypoplasia congenita. DAX-1 has been observed to act as a corepressor of other nuclear receptors including androgen receptor (AR), estrogen receptor (ER), and steroidogenic factor 1 (SF-1). In addition to pluripotent ES cells, DAX-1 is primarily expressed in select tissues of …


Loss Of Thiol Repair Systems In Human Cataractous Lenses, Min Wei, Kui-Yi Xing, Yin-Chuan Fan, Teodosio Libondi, Marjorie F. Lou Dec 2014

Loss Of Thiol Repair Systems In Human Cataractous Lenses, Min Wei, Kui-Yi Xing, Yin-Chuan Fan, Teodosio Libondi, Marjorie F. Lou

School of Veterinary and Biomedical Sciences: Faculty Publications

PURPOSE. The purpose of this study was to investigate the thiol repair systems of thioltransferase (TTase) and thioredoxin (Trx) and oxidation-damaged proteins in human cataractous lenses.

METHODS. Cataractous lenses in humans (57–85 years of age) were classified into cortical, nuclear, mixed, mature, and hypermature cataract types by using a lens opacity classification system, and were obtained by extracapsular cataract extraction (ECCE) procedure. Cortical and nuclear cataracts were grouped by decreasing order of visual acuity into optical chart reading (R), counting fingers (CF), hand motion (HM), and light perception (LP). ECCE lens homogenate was analyzed for glutathione (GSH) level and enzyme …


Dancing Through Life: Allosteric Transitions And Structural Analysis Of Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker Dec 2014

Dancing Through Life: Allosteric Transitions And Structural Analysis Of Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker

Student Scholar Symposium Abstracts and Posters

The molecular chaperone protein Hsp70 is centrally involved in cellular homeostasis by assisting in the folding and degradation of protein substrates. Hsp70 is joined by co-chaperones, such as Hsp110, which contribute to specialized tasks of the Hsp70 complex. Imbalances of this heat shock protein system are believed to be involved with the deregulation of cancer pathways and other human diseases. Better understanding of how these heat shock proteins work at the molecular level, which has been investigated using molecular docking tools, will give more clues about biological function. Simulating the formation and function of Hsp70 based chaperone complexes could provide …


Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan Dec 2014

Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan

FIU Electronic Theses and Dissertations

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems.

In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA …


The Role Of Nag-1 In Tumorigenesis, Kyung-Won Min Dec 2014

The Role Of Nag-1 In Tumorigenesis, Kyung-Won Min

Doctoral Dissertations

This dissertation explores the nature of a divergent member of the Transforming Growth Factor-β [beta] superfamily, the non-steroidal anti-inflammatory drugs activated gene (NAG-1), as it relates to its regulation and biological activity in cancer context. Our lab has extensively studied on the molecular mechanism by which phytochemicals and NSAIDs induce apoptosis correlation with NAG-1 expression in human colorectal cancer (CRC) cells. Significant data from in vitro studies suggest that NAG-1 has an anti-tumorigenic activity which elicits apoptosis in a cyclooxygenase (COX)-independent manner in CRC cells. Indeed, NAG-1 transgenic mice developed less aberrant polyp foci (APC) compared to those of control …


Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee Dec 2014

Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee

Dissertations & Theses (Open Access)

Cancer cells display dramatic alterations in cellular metabolism to meet their needs of increased growth and proliferation. In the last decade, cancer research has brought these pathways into focus, and one emerging issue that has come to attention is that many oncogenes and tumor-suppressors are intimately linked to metabolic regulation (Jones and Thompson, 2009). One of the key tumor-suppressors involved in metabolism is Liver Kinase B1 (LKB1). LKB1 is the major upstream kinase of the evolutionarily conserved metabolic sensor—AMP-activated protein kinase (AMPK). Activation of the LKB1/AMPK pathway provides a survival advantage for cells under energy stress. LKB1 forms a heterotrimeric …


Jab1 Negatively Regulates Pten And Promotes Resistance To Trastuzumab In Her2-Positive Breast Cancer, Thuy T. Vu Dec 2014

Jab1 Negatively Regulates Pten And Promotes Resistance To Trastuzumab In Her2-Positive Breast Cancer, Thuy T. Vu

Dissertations & Theses (Open Access)

HER2-positive breast cancer, which is characterized by the over-expression of the HER2 onco-protein, accounts for approximately 20% of all breast cancer cases. Trastuzumab (Herceptin), the first targeted therapy approved for HER2-positive disease, potently prevents the activation of signaling pathways downstream of HER2 and significantly improves patients’ outcomes. However, resistance to trastuzumab is inevitable; such resistance can occur through reduced expression of PTEN protein.

Jab1 is over-expressed in 50% of primary cancers and 90% of metastatic tumors. Our lab previously showed that depletion of Jab1 in combination with trastuzumab treatment up-regulated PTEN in mouse xenografts refractory to trastuzumab. PTEN was not …


Glutaredoxin 2 (Grx2) Gene Deletion Induces Early Onset Of Age-Dependent Cataracts In Mice, Hongli Wu, Yibo Yu, Larry David, Ye-Shih Ho, Marjorie . F. Lou Dec 2014

Glutaredoxin 2 (Grx2) Gene Deletion Induces Early Onset Of Age-Dependent Cataracts In Mice, Hongli Wu, Yibo Yu, Larry David, Ye-Shih Ho, Marjorie . F. Lou

School of Veterinary and Biomedical Sciences: Faculty Publications

Glutaredoxin 2 (Grx2) is an isozyme of glutaredoxin1 (thioltransferase) present in the mitochondria and nucleus with disulfide reductase and peroxidase activities, and it controls thiol/ disulfide balance in cells. In this study, we investigated whether Grx2 gene deletion could induce faster age-related cataract formation and elucidated the biochemical changes effected by Grx2 gene deletion that may contribute to lens opacity. Slit lamp was used to examine the lenses in Grx2 knock-out (KO) mice and age-matched wild-type (WT) mice ages 1 to 16 months. In the Grx2 null mice, the lens nuclear opacity began at 5 months, 3 months sooner than …


The Role Of Stem Cells In Adipose Tissue Remodeling., Candice Reshay Holden 1988- Dec 2014

The Role Of Stem Cells In Adipose Tissue Remodeling., Candice Reshay Holden 1988-

Electronic Theses and Dissertations

The work presented in this dissertation outlines the role of stem cells in the remodeling of adipose tissue under conditions of nutrient excess. Obesity-induced variations in adipose tissue stem cell distribution were uncovered by analysis of the stromal vascular fraction isolated from mice fed a high fat diet for several weeks. Bone marrow cell transplantation was used to determine the derivation of progenitor cells found in adipose tissue; and supplementation of depleted progenitor cell populations achieved via direct cell transplantation, helped to determine the contribution of these progenitor cells to the remodeling process. The dissertation is presented in five chapters …


Investigation Of Nuclear And Cytoplasmic Functions Of The Dlipin Protein Of Drosophila Melanogaster, Qiuyu Chen Dec 2014

Investigation Of Nuclear And Cytoplasmic Functions Of The Dlipin Protein Of Drosophila Melanogaster, Qiuyu Chen

Graduate Theses and Dissertations

Lipin family proteins are highly conserved proteins present in species ranging from mammals to yeast. Lipin 1, the first Lipin gene identified in fatty liver dystrophy (fld) mutant mice, encodes the bifunctional protein Lipin 1, which can serve as an Mg2+-dependent phosphatidic acid phosphatase (PAP) and transcriptional co-regulator. dLipin, the single Lipin ortholog of Drosophila melanogaster, is required in triglyceride synthesis and fat body development. To study the transcriptional co-regulator activity of dLipin, nuclear receptors were screened to find receptors that interact with dLipin. The genetic interaction data indicated that Drosophila hepatic nuclear receptor 4 (HNF4) was a promising candidate …


P120-Catenin Regulates Rest And Corest, And Modulates Mouse Embryonic Stem Cell Differentiation, Moonsup Lee Dec 2014

P120-Catenin Regulates Rest And Corest, And Modulates Mouse Embryonic Stem Cell Differentiation, Moonsup Lee

Dissertations & Theses (Open Access)

The canonical-Wnt pathway and beta-catenin have been extensively studied to determine their contributions to stem cell biology, but less is known about p120-catenin in the nuclear compartment. P120 is developmentally required as a consequence of its biochemical and functional interactions with cadherins, small-GTPases and transcriptional regulators. We report here that p120-catenin binds to and negatively regulates REST and CoREST, that others have indicated form a repressive complex having diverse key roles in developmental and pathologic gene regulation. We thus provide the first evidence for a direct upstream modulator of REST/CoREST function. Using mouse embryonic stem cells (mESCs), mammalian cell lines, …


Nuclear Transport Of Single Molecules: Dwell Times At The Nuclear Pore Complex, Ulrich Kubitscheck, David Grunwald, Andreas Hoekstra, Daniel Rohleder, Thorsten Kues, Jan Peter Siebrasse, Reiner Peters Nov 2014

Nuclear Transport Of Single Molecules: Dwell Times At The Nuclear Pore Complex, Ulrich Kubitscheck, David Grunwald, Andreas Hoekstra, Daniel Rohleder, Thorsten Kues, Jan Peter Siebrasse, Reiner Peters

David Grünwald

The mechanism by which macromolecules are selectively translocated through the nuclear pore complex (NPC) is still essentially unresolved. Single molecule methods can provide unique information on topographic properties and kinetic processes of asynchronous supramolecular assemblies with excellent spatial and time resolution. Here, single-molecule far-field fluorescence microscopy was applied to the NPC of permeabilized cells. The nucleoporin Nup358 could be localized at a distance of 70 nm from POM121-GFP along the NPC axis. Binding sites of NTF2, the transport receptor of RanGDP, were observed in cytoplasmic filaments and central framework, but not nucleoplasmic filaments of the NPC. The dwell times of …


Intranuclear Binding Kinetics And Mobility Of Single Native U1 Snrnp Particles In Living Cells, David Grunwald, Beatrice Spottke, Volker Buschmann, Ulrich Kubitscheck Nov 2014

Intranuclear Binding Kinetics And Mobility Of Single Native U1 Snrnp Particles In Living Cells, David Grunwald, Beatrice Spottke, Volker Buschmann, Ulrich Kubitscheck

David Grünwald

Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are splicing factors, which are diffusely distributed in the nucleoplasm and also concentrated in nuclear speckles. Fluorescently labeled, native U1 snRNPs were microinjected into the cytoplasm of living HeLa cells. After nuclear import single U1 snRNPs could be visualized and tracked at a spatial precision of 30 nm at a frame rate of 200 Hz employing a custom-built microscope with single-molecule sensitivity. The single-particle tracks revealed that most U1 snRNPs were bound to specific intranuclear sites, many of those presumably representing pre-mRNA splicing sites. The dissociation kinetics from these sites showed a multiexponential decay …


Autonomy And Robustness Of Translocation Through The Nuclear Pore Complex: A Single-Molecule Study, Thomas Dange, David Grunwald, Antje Grunwald, Reiner Peters, Ulrich Kubitscheck Nov 2014

Autonomy And Robustness Of Translocation Through The Nuclear Pore Complex: A Single-Molecule Study, Thomas Dange, David Grunwald, Antje Grunwald, Reiner Peters, Ulrich Kubitscheck

David Grünwald

All molecular traffic between nucleus and cytoplasm occurs via the nuclear pore complex (NPC) within the nuclear envelope. In this study we analyzed the interactions of the nuclear transport receptors kapalpha2, kapbeta1, kapbeta1DeltaN44, and kapbeta2, and the model transport substrate, BSA-NLS, with NPCs to determine binding sites and kinetics using single-molecule microscopy in living cells. Recombinant transport receptors and BSA-NLS were fluorescently labeled by AlexaFluor 488, and microinjected into the cytoplasm of living HeLa cells expressing POM121-GFP as a nuclear pore marker. After bleaching the dominant GFP fluorescence the interactions of the microinjected molecules could be studied using video microscopy …


Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives Nov 2014

Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives

David Grünwald

The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3sigma) to be similarly regulated by Nup98. The expression …


Differential Muscle Hypertrophy Is Associated With Satellite Cell Numbers And Akt Pathway Activation Following Activin Type Iib Receptor Inhibition In Mtm1 P.R69c Mice, Michael Lawlor, Marissa Viola, Hui Meng, Rachel Edelstein, Fujun Liu, Ke Yan, Elizabeth Luna, Alexandra Lerch-Gaggl, Raymond Hoffmann, Christopher Pierson, Anna Buj-Bello, Jennifer Lachey, Scott Pearsall, Lin Yang, Cecilia Hillard, Alan Beggs Oct 2014

Differential Muscle Hypertrophy Is Associated With Satellite Cell Numbers And Akt Pathway Activation Following Activin Type Iib Receptor Inhibition In Mtm1 P.R69c Mice, Michael Lawlor, Marissa Viola, Hui Meng, Rachel Edelstein, Fujun Liu, Ke Yan, Elizabeth Luna, Alexandra Lerch-Gaggl, Raymond Hoffmann, Christopher Pierson, Anna Buj-Bello, Jennifer Lachey, Scott Pearsall, Lin Yang, Cecilia Hillard, Alan Beggs

Elizabeth J. Luna

X-linked myotubular myopathy is a congenital myopathy caused by deficiency of myotubularin. Patients often present with severe perinatal weakness, requiring mechanical ventilation to prevent death from respiratory failure. We recently reported that an activin receptor type IIB inhibitor produced hypertrophy of type 2b myofibers and modest increases of strength and life span in the severely myopathic Mtm1δ4 mouse model of X-linked myotubular myopathy. We have now performed a similar study in the less severely symptomatic Mtm1 p.R69C mouse in hopes of finding greater treatment efficacy. Activin receptor type IIB inhibitor treatment of Mtm1 p.R69C animals produced behavioral and histological evidence …


Development And Evaluation Of A Replicon Particle Vaccine Expressing The E2 Glycoprotein Of Bovine Viral Diarrhea Virus (Bvdv) In Cattle, John Dustin Loy, Jill Gander, Mark Mogler, Ryan Vander Veen, Julia Ridpath, Delbert Hank Harris, Kurt Kamrud Oct 2014

Development And Evaluation Of A Replicon Particle Vaccine Expressing The E2 Glycoprotein Of Bovine Viral Diarrhea Virus (Bvdv) In Cattle, John Dustin Loy, Jill Gander, Mark Mogler, Ryan Vander Veen, Julia Ridpath, Delbert Hank Harris, Kurt Kamrud

John Loy

Background: Bovine viral diarrhea virus is one of the most significant and costly viral pathogens of cattle worldwide. Alphavirus-derived replicon particles have been shown to be safe and highly effective vaccine vectors against a variety of human and veterinary pathogens. Replicon particles are non-propagating, DIVA compatible, and can induce both humoral and cell mediated immune responses. This is the first experiment to demonstrate that Alphavirus-based replicon particles can be utilized in a standard prime/boost vaccination strategy in calves against a commercially significant bovine pathogen. Findings: Replicon particles that express bovine viral diarrhea virus sub-genotype 1b E2 glycoprotein were generated and …


Associated Behavioral, Genetic, And Gene Expression Variation With Alternative Life History Tactics In Salmonid Fishes, Ashley Chin-Baarstad Oct 2014

Associated Behavioral, Genetic, And Gene Expression Variation With Alternative Life History Tactics In Salmonid Fishes, Ashley Chin-Baarstad

Open Access Dissertations

Individual differences in behavior can have potential fitness consequences and often reflect underlying genetic variation. My research focuses on three objectives related to individual level variation: 1) evaluating the innate behavioral variation within and between individuals, families, and progeny of different life-history types across time; 2) testing for differences in gene expression within the brain associated with this behavioral variation; and 3) using genetic polymorphisms to test for associations with ecotype, as well as population structure, in polymorphic populations. First, we evaluated the variation in a suite of ecologically relevant behaviors across time in juvenile progeny produced from crosses within …


Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson Oct 2014

Intranuclear Strain Measured By Iterative Warping In Cells Under Mechanical And Osmotic Stress, Jonathan T Henderson

Open Access Dissertations

The nucleus is a membrane bound organelle and regulation center for gene expression in the cell. Mechanical forces transfer to the nucleus directly and indirectly through specific cellular cytoskeletal structures and pathways. There is increasing evidence that the transferred forces to the nucleus orchestrate gene expression activity. Methods to characterize nuclear mechanics typically study isolated cells or cells embedded in 3D gel matrices. Often report only aspect ratio and volume changes, measures that oversimplify the inherent complexity of internal strain patterns. This presents technical challenges to simultaneously observe small scale nuclear mechanics and gene expression levels inside the nuclei of …


Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen Oct 2014

Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen

Faculty Publications

Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of …


Mechanisms And Molecular Biology Of Major Tumor Suppressors, Brienne E. Engel Sep 2014

Mechanisms And Molecular Biology Of Major Tumor Suppressors, Brienne E. Engel

USF Tampa Graduate Theses and Dissertations

This dissertation is devoted to the study of the molecular biology of major tumor suppressors, defined as those that prevent the cellular processes identified as the hallmarks of cancer. Specifically, the major tumor suppressors pRb and STK11 are explored in the context of osteosarcoma and lung cancer, respectively.

RB1 was the first tumor suppressor gene discovered. Over four decades of work have revealed that the Rb protein (pRb) is a master regulator of biological pathways influencing virtually every aspect of intrinsic cell fate including cell growth, cell-cycle checkpoints, differentiation, senescence, self-renewal, replication, genomic stability and apoptosis. While these many processes …


Role And Regulation Of Snon/Skil And Plscr1 Located At 3q26.2 And 3q23, Respectively, In Ovarian Cancer Pathophysiology, Madhav Karthik Kodigepalli Sep 2014

Role And Regulation Of Snon/Skil And Plscr1 Located At 3q26.2 And 3q23, Respectively, In Ovarian Cancer Pathophysiology, Madhav Karthik Kodigepalli

USF Tampa Graduate Theses and Dissertations

Ovarian cancer is one of the most common causes of gynecological cancer related deaths in women. In 2014, the estimated number of deaths due to ovarian cancer is 14,270 with occurrence of over 22, 240 new cases (National Cancer Institute, http://seer.cancer.gov/statfacts/html/ovary.html). Despite improvement in treatment strategies, the 5-year survival rate is still below 50% mainly due to chemoresistance and relapse. Amplification of chromosomal region 3q26 is a common characteristic in various epithelial cancers including ovarian cancer. This region harbors various oncogenes including the TGFβ signaling mediators EVI1 and SnoN/SkiL, PKCι and PIK3CA amplified at 3q26.2 and 3q26.3, respectively, in ovarian …


A Rational Framework For Evaluating The Next Generation Of Vaccines Against Mycobacterium Avium Subspecies Paratuberculosis, John P. Bannantine, Murray E. Hines Ii, Luiz E. Bermudez, Adel M. Talaat, Srinand Sreevatsan, Judith R. Stabel, Yung-Fu Chang, Paul M. Coussens, Raúl G. Barletta, William C. Davis, Desmond M. Collins, Yrjö T. Gröhn, Vivek Kapur Sep 2014

A Rational Framework For Evaluating The Next Generation Of Vaccines Against Mycobacterium Avium Subspecies Paratuberculosis, John P. Bannantine, Murray E. Hines Ii, Luiz E. Bermudez, Adel M. Talaat, Srinand Sreevatsan, Judith R. Stabel, Yung-Fu Chang, Paul M. Coussens, Raúl G. Barletta, William C. Davis, Desmond M. Collins, Yrjö T. Gröhn, Vivek Kapur

School of Veterinary and Biomedical Sciences: Faculty Publications

Since the early 1980s, several investigations have focused on developing a vaccine against Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease in cattle and sheep. These studies used whole-cell inactived vaccines that have proven useful in limiting disease progression, but have not prevented infection. In contrast, modified live vaccines that invoke a Th1 type immune response, may improve protection against infection. Spurred by recent advances in the ability to create defined knockouts in MAP, several independent laboratories have developed modified live vaccine candidates by transcriptional mutation of virulence and metablolic genes in MAP. In order to accelerate …


Transcriptional Regulation Of Sinorhizobium Meliloti Cell Cycle-Related Genes In The Δcbra Mutant And Root Nodules Of Medicago Sativa, Corey S. Hazekamp Aug 2014

Transcriptional Regulation Of Sinorhizobium Meliloti Cell Cycle-Related Genes In The Δcbra Mutant And Root Nodules Of Medicago Sativa, Corey S. Hazekamp

Graduate Masters Theses

Sinorhizobium meliloti is a Gram-negative alphaproteobacterium and nitrogen-fixing symbiont, which undergoes a novel cell cycle modification during its' host-microbe interaction. I intend to monitor the transcriptional regulation of cell cycle-related genes during free-loving growth, in addition to monitoring their expression during symbiosis. Using genes known to be regulated by CtrA in C. crescentus or predicted to be regulated by CtrA in S. meliloti, I aim to show how certain cell cycle genes are regulated in S. meliloti. In C. crescentus, CtrA acts as a transcription factor that is active when phosphorylated and inactive when not phosphorylated. In …


Elucidating The Signalling Pathway Of Mer Tyrosine Kinase Receptor In Efferocytosis, Ekenedelichukwu Azu Aug 2014

Elucidating The Signalling Pathway Of Mer Tyrosine Kinase Receptor In Efferocytosis, Ekenedelichukwu Azu

Electronic Thesis and Dissertation Repository

Efferocytosis is the clearance of apoptotic cells and is necessary for homeostasis. Mer Tyrosine Kinase (MerTK) is a crucial efferocytic receptor whose loss is associated with chronic inflammatory diseases and autoimmunity. While previous studies have shown that MerTK mediates efferocytosis through a unique mechanism that requires integrins, MerTK signalling pathway remains unknown. Given this unusual internalization mechanism, I hypothesized that MerTK signals and engages integrins through a novel signalling pathway different from that used by other phagocytic receptors. Therefore, this study aimed to identify the signalling pathways activated by MerTK, utilizing conventional cell biology and pharmacological approaches.

I found that …


Poly(Arginine) Derived Cancer-Targeting Peptides For The Development Of A Cancer-Targeted Gene Therapy Approach In Hepg2 Liver Cancer Cells, Stesha C. Joseph Aug 2014

Poly(Arginine) Derived Cancer-Targeting Peptides For The Development Of A Cancer-Targeted Gene Therapy Approach In Hepg2 Liver Cancer Cells, Stesha C. Joseph

Seton Hall University Dissertations and Theses (ETDs)

Cancer is a disease that has eluded medicinal approaches for many years and as a result new and improved therapeutic approaches are in constant demand. Although chemotherapy and radiation treatments have assisted in suppressing the growth of tumors, their poor selectivity and efficacy are major limitations for effective therapy en route towards the development of a cure for the cancer epidemic. With the mission of conquering cancer at heart, researchers have pursued a new form of cancer therapy, aptly named, a cancer targeting approach. This method revolves around the selection of a suitable biomarker, typically a cell surface receptor …


Electrophoresis Staining: A New Method Of Whole Mount Staining, Mitchell G. Ayers, Sarah Calve, Zhiyu Li Aug 2014

Electrophoresis Staining: A New Method Of Whole Mount Staining, Mitchell G. Ayers, Sarah Calve, Zhiyu Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Advances in tissue clearing techniques have allowed almost a ten-fold increase in the viewing depth of confocal microscopy. This allows for intact cellular structures to be rendered in 3D. However, viewing tissues to this depth is often limited to endogenous fluorescence as passive diffusion of antibodies via whole mount staining can take weeks. Our lab is developing a new method involving electrophoresis as a driving force that will promote active antibody binding deep into tissue, reducing the amount of time needed to stain for cellular structures. Due to the inherent charge within antibodies, they are able to be directionally forced …


Elcs In Ice: Cryo-Electron Microscopy Of Nuclear Envelope Limited Chromatin Sheets, Mikhail Eltsov, Sergey Sosnovksi, Ada L. Olins, Donald E. Olins Aug 2014

Elcs In Ice: Cryo-Electron Microscopy Of Nuclear Envelope Limited Chromatin Sheets, Mikhail Eltsov, Sergey Sosnovksi, Ada L. Olins, Donald E. Olins

Pharmaceutical Sciences Faculty Posters

Nuclear Envelope-Limited Chromatin Sheets (ELCS) form during excessive interphase nuclear envelope growth in a variety of cells. ELCS appear as extended sheets within the cytoplasm connecting distant nuclear lobes. Cross-section stained images of ELCS, viewed by transmission electron microscopy, resemble a sandwich of apposed nuclear envelopes separated by ~30 nm, containing a layer of ordered chromatin fibers. EM Procedures: The ultrastructure of ELCS was compared by three different methods: 1) aldehyde fixation/dehydration/plastic embedding/sectioning and staining; 2) high-pressure freezing/freeze substitution into plastic/sectioning and staining; 3) high-pressure freezing/cryo-sectioning/cryo-electron microscopy. Human leukemic (HL-60/S4) cells were treated with retinoic acid (4 days) to induce …


Antiviral Responses In Mouse Embryonic Stem Cells: Differential Development Of Cellular Mechanisms In Type I Interferon Production And Response, Ruoxing Wang Aug 2014

Antiviral Responses In Mouse Embryonic Stem Cells: Differential Development Of Cellular Mechanisms In Type I Interferon Production And Response, Ruoxing Wang

Dissertations

Embryonic stem cells (ESCs) have been recognized as a promising cell source for regenerative medicine. Intensive research over the past decade has led to the possibility that ESC-derived cells will be used for the treatment of human diseases. However, increasing evidence indicates that ESC-derived cells generated by the current differentiation methods are not fully functional. It is recently recognized that ESC-derived cells lack innate immunity to a wide range of infectious agents and inflammatory cytokines. When used in patients, ESC-derived cells would be placed in wounded sites that are exposed to various pathogens and inflammatory cytokines; therefore, their viability and …


Roles For B-Raf Kinase In The Specific Regulation Of Α4Β1 Integrin In T Cells, Wells S. Brown Aug 2014

Roles For B-Raf Kinase In The Specific Regulation Of Α4Β1 Integrin In T Cells, Wells S. Brown

Dissertations & Theses (Open Access)

The regulation of integrin-mediated adhesion is of vital importance to adaptive and innate immunity. Integrins are versatile proteins and mediate T cell migration and trafficking by binding to ECM or other cells, as well as initiating intracellular signaling cascades promoting survival or activation. The mitogen activated-protein kinase (MAPK) pathway is known to be downstream from integrins and regulate survival, differentiation, and motility. However, secondary roles for canonical MAPK pathway members are being discovered. We show chemical inhibition of RAF by Sorafenib or shRNA-mediated knockdown of B-Raf reduces T cell resistance to shear stress to α4β1 integrin ligands vascular cell adhesion …