Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Theses/Dissertations

2021

UPR

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Nuclear Receptor Coactivator 3 In Endoplasmic Reticulum Stress And Stress Granule Dynamics In Pancreatic Cancer, Andrew Kisling Dec 2021

Nuclear Receptor Coactivator 3 In Endoplasmic Reticulum Stress And Stress Granule Dynamics In Pancreatic Cancer, Andrew Kisling

Theses & Dissertations

Pancreatic cancer is predicted to be the second-leading cause of cancer-related deaths within the next decade. Nuclear receptor coactivator 3 (NCOA3/SRC3/AIB1) regulates an array of metabolic and signaling pathways and has been established by our group and others as a critical regulator pancreatic cancer progression and metastasis. A recent study demonstrated NCOA3 regulation by the IRE1α-XBP1 axis of the unfolded protein response (UPR), suggesting a link between NCOA3 and cellular stress management. Furthermore, NCOA3 has been shown to directly bind to a scaffolding protein of stress granules (SGs). Since SG assembly is regulated by the UPR, we hypothesized that NCOA3 …


Molecular Mechanism Of Action Of The Natural Polyphenolic Compound And The P300 Inhibitor “Carnosol” Against The Triple Negative Breast Cance, Halima Ali Mohammed Salem Alsamri Nov 2021

Molecular Mechanism Of Action Of The Natural Polyphenolic Compound And The P300 Inhibitor “Carnosol” Against The Triple Negative Breast Cance, Halima Ali Mohammed Salem Alsamri

Dissertations

Carnosol, a naturally occurring Phyto polyphenol found in sage, oregano, and rosemary, has been extensively studied by our laboratory for its anticancer effects in various types of cancer. In human Triple-Negative Breast Cancer (TNBC), carnosol was shown to inhibit cellular viability, colony growth, induced cell cycle arrest, autophagy, and apoptosis. Nonetheless, very little is known about the molecular mechanism of action. In the current study, the ability of carnosol to inhibit metastasis and tumour growth was examined. Wound healing and invasion assays revealed that carnosol inhibited migration and invasion at non-cytotoxic concentrations of MDA-MB-231 cells. Also, carnosol was found to …