Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Understanding SjöGren's Syndrome As A Systemic Autoimmune Disorder, Gaietchyne Chery Dec 2022

Understanding SjöGren's Syndrome As A Systemic Autoimmune Disorder, Gaietchyne Chery

Legacy Theses & Dissertations (2009 - 2024)

Sjögren’s syndrome is an autoimmune condition characterized by a dysfunction in the lachrymal and salivary glands which results in dry eyes and dry mouth. Since its first description in 1892, the disease is one of the most common autoimmune diseases after lupus erythematosus and rheumatoid arthritis in the United States. Despite its high prevalence in the general population, Sjögren’s syndrome remains hard to diagnose due to the wide range of symptoms associated with the disease that is also shared by other conditions. Furthermore, the mechanisms behind the pathogenesis are not properly understood even though multiple factors have been proposed to …


Parallel Networks That Govern The Transcriptional Response To Stress, Serene Anne Durham Aug 2022

Parallel Networks That Govern The Transcriptional Response To Stress, Serene Anne Durham

Legacy Theses & Dissertations (2009 - 2024)

The transcription factor, p53, plays a pivotal role in the oversight of many stimulus-dependent pathways. Its ability to respond to a wide variety of cellular stress stimuli by activating a broad range of target genes has led it to be characterized as a stress-dependent transcription factor. Our research focuses on deconvoluting the varied transcriptional response to distinct stress signals in an attempt to define the regulatory strategies leading to gene activation after cell stress. We have found that distinct stress response networks, some of which are p53-independent, are converging at activation of a common set of target genes. Our data …


N6-Methyladenosine Rna Modifications In Myogenesis / Narrative Competence And Cognitive Mapping As A Culturally Sustaining Pedagogy In The Education Of Emergent Bilinguals, Marina Danielle Infantado Aug 2022

N6-Methyladenosine Rna Modifications In Myogenesis / Narrative Competence And Cognitive Mapping As A Culturally Sustaining Pedagogy In The Education Of Emergent Bilinguals, Marina Danielle Infantado

Legacy Theses & Dissertations (2009 - 2024)

Myogenesis involves skeletal muscle stem cells (MuSCs) that produce and regenerate skeletal muscle during regular growth and repair. However, when this system fails to function normally, it can lead to musculoskeletal diseases like Duchenne Muscular Dystrophy (DMD). Therefore, it is important to study the molecular mechanisms behind this developmental process in order to seek therapies and solutions for these types of diseases. Our interest lies in the field of epitranscriptomics, which focuses on post-transcriptional ribonucleic acid (RNA) modifications, particularly N6-methyladenosine (m6A), which involves the addition of a methyl group to the adenosine nucleotide, a process that is mediated by the …


Exploring The Roles Of Stress, Codon Usage, And Rna Modifications In Myotonic Dystrophy Type 1, Afrooz Golestanian Jan 2022

Exploring The Roles Of Stress, Codon Usage, And Rna Modifications In Myotonic Dystrophy Type 1, Afrooz Golestanian

Legacy Theses & Dissertations (2009 - 2024)

Myotonic dystrophy (DM), the most common form of muscular dystrophy, is a neuromuscular disease caused by microsatellite repeat expansions. It can represent a multi-systemic autosomal dominant disease with DM1 and DM2 subtypes. A cytosine-thymine-guanine (CTG) triplet repeat in the 3’ untranslated region (3’UTR) of myotonic dystrophy protein kinase (DMPK) gene causes DM1 disease, which leads to the production of a longer, abnormal and toxic mRNA. The toxic DMPK mRNA sequester the splicing proteins such as Muscle blind-like (MBNL) and rbFOX which leads to gene expression alteration. Repeat associated non-AUG (RAN) translation also occurs in DM1. Mitochondrial dysregulation has also been …


Salivary Gland Stromal Heterogeneity And Epithelial Controls, Nicholas L. Moskwa Jan 2022

Salivary Gland Stromal Heterogeneity And Epithelial Controls, Nicholas L. Moskwa

Legacy Theses & Dissertations (2009 - 2024)

Organogenesis is the process organs go through where cellular communications coordinate all a developing organ needs. What organs need are more cells, in the right place, doing the right job. In the salivary gland, we know that stromal cells are important for organogenesis and that they coordinate the epithelium’s form and functions. However, specific stromal contributions have focused on epithelial quantity and placement. There is less information about how the stroma directs the epithelium towards certain functions. Here we used organoids as a model for understanding what stromal signaling directs epithelial cell fate. We found that stromal cell state is …


Study Of Primary Cilium Structure And Intraflagellar Transport, Shufeng Sun Jan 2021

Study Of Primary Cilium Structure And Intraflagellar Transport, Shufeng Sun

Legacy Theses & Dissertations (2009 - 2024)

Primary cilia are hair-like protrusions that stem from the basal bodies in the cytoplasm and extend into the extracellular space to sense signals. Intraflagellar transport (IFT) functions to transport cargo molecules into and out of the ciliary compartment to assemble, maintain, and disassemble the cilia. Accurate knowledge of the three-dimensional (3D) structure of primary cilia and precise details of the IFT profile is the foundation for understanding the sensory functions of primary cilia. This work covers three aspects of primary cilia. Firstly, we obtained and analyzed the overall 3D architecture of the complete primary cilia axoneme region using serial section …


Tgfbeta1 And Stat3 As Regulators Of The Ha Synthesis And Signaling Pathway, Brenda Goretty Trevizo Aug 2020

Tgfbeta1 And Stat3 As Regulators Of The Ha Synthesis And Signaling Pathway, Brenda Goretty Trevizo

Legacy Theses & Dissertations (2009 - 2024)

The studies described here explored the role of Transforming Growth Factor Beta-1 (TGFβ1) and Signal Transducer and Activator of Transcription 3 (STAT3) as potential regulators of the Hyaluronic Acid (HA) synthesis and signaling pathway in human mammary cells. Our results support previous findings in which TGFβ1, a well characterized driver of the epithelial-mesenchymal transition (EMT) has been shown to regulate HA synthesis and signaling. Interrogation of The Cancer Genome Atlas (TCGA) indicated HAS2 expression positively correlated with TGFβ1 mRNA expression in breast cancer patients and in breast cancer cell lines. RT-qPCR experiments were used to measure the expression of the …


Launching The Next Generation : Transcriptional Regulation During Oogenesis, Alicia K. Mccarthy Jan 2020

Launching The Next Generation : Transcriptional Regulation During Oogenesis, Alicia K. Mccarthy

Legacy Theses & Dissertations (2009 - 2024)

Germ cells give rise to gametes and link generations by passing genetic information from parent to offspring. Gametes arise from, in many sexually reproducing organisms, germline stem cells (GSCs) which are set aside early during development. GSCs have an amazing capacity to undergo self-renewal to give rise to a pool of undifferentiated cells, while also differentiating to generate specialized germ cells such as haploid gametes. Upon female GSC differentiation, mitotically dividing germ cells can initiate meiosis, and mature within a follicle. During maturation, the specified oocyte is provided with a trust fund of RNAs and proteins for the next generation …


The Stromal Response In Salivary Gland Injury, Kevin O'Keefe Jan 2020

The Stromal Response In Salivary Gland Injury, Kevin O'Keefe

Legacy Theses & Dissertations (2009 - 2024)

Abstract


The Influence Of Mir-322 On Skeletal Muscle Differentiation, Miles Alexander Soyer Aug 2019

The Influence Of Mir-322 On Skeletal Muscle Differentiation, Miles Alexander Soyer

Legacy Theses & Dissertations (2009 - 2024)

Skeletal muscle plays a crucial role in coordinating voluntary movement and accounts for nearly 50% of total body mass. Dysregulation in skeletal muscle development is known to cause muscle degenerative diseases including the devastating Duchenne Muscular Dystrophy (DMD). The majority of the biological studies investigating muscle development were based on myogenic transcription factors and signaling molecules including: Pax7, Myf5, MyoD, WNT, TGF-β and BMP. After the discovery of non-coding RNAs including microRNAs, it was postulated that these molecules could regulate gene expression and thus affect differentiation and development. MicroRNAs are small non-coding RNAs (~17-25 nucleotides) that regulate gene expression negatively …


Of Donuts And Promo : In Silico Approaches To Identification Of Transcriptional Regulators Of Salivary Acinar Differentiation, Connor Cillian Duffy Jan 2019

Of Donuts And Promo : In Silico Approaches To Identification Of Transcriptional Regulators Of Salivary Acinar Differentiation, Connor Cillian Duffy

Legacy Theses & Dissertations (2009 - 2024)

The salivary gland is an organ often taken for granted by most people. However, its proper function is essential for several everyday activities, such as speaking, swallowing, and tasting. As such, impaired salivary gland function, such as that caused by Sjögren’s Syndrome or radiotherapy for head and neck cancers, can lead to a significantly reduced quality of life. The cells that produce saliva in salivary glands are known as acinar cells, which arise from proacinar cells generated during embryonic development. As such, in studying the promoter regions of proacinar and acinar genes, it may be possible to identify common transcription …


Retinoic Acid Receptor Isoform-Specific Control Of Mouse Salivary Gland Development And Regeneration, Kara Desantis Jan 2018

Retinoic Acid Receptor Isoform-Specific Control Of Mouse Salivary Gland Development And Regeneration, Kara Desantis

Legacy Theses & Dissertations (2009 - 2024)

Controlled expansion and differentiation of progenitor cell populations is essential for organogenesis followed by continued maintenance of the population into and through adulthood. As the K5+ basal cell population is regulated by retinoic acid signaling, we interrogated the contribution of specific RAR isoforms to the regulation of these cells during submandibular salivary gland (SMG) organogenesis and regeneration. Retinoic acid has previously been shown to be involved in the development of the salivary gland, and recently, lack of retinoid signaling has been shown to impact the K5+ population of basal progenitor cells. Since retinoic acid is known to exert stimulatory effects …


Regulated Transcriptional Silencing Promotes Germline Stem Cell Differentiation In Drosophila Melanogaster, Pooja Flora Jan 2018

Regulated Transcriptional Silencing Promotes Germline Stem Cell Differentiation In Drosophila Melanogaster, Pooja Flora

Legacy Theses & Dissertations (2009 - 2024)

Germ cells are the only cell in an organism that have the capacity to give rise to a new organism and are passed from one generation to the next. Therefore, to maintain this unique ability of totipotency and immortality, germ cells execute specific functions, such as, repression of a somatic program and contour a germ line-specific pre- and post-transcriptional gene regulatory landscape. In many sexually reproducing organisms, germ cells are formed during the earliest stages of embryogenesis and undergoes several stages of development to eventually get encapsulated by the somatic cells of the gonad. Once, in the gonad, the germ …


Chromatin-Signaling Axis Orchestrates The Formation Of Germline Stem Cell Differentiation Niche In Drosophila, Maitreyi Upadhyay Jan 2018

Chromatin-Signaling Axis Orchestrates The Formation Of Germline Stem Cell Differentiation Niche In Drosophila, Maitreyi Upadhyay

Legacy Theses & Dissertations (2009 - 2024)

Stem cells have the unique capability of self-renewing into stem cells and differentiating into several terminal cell types. Loss of either of these processes can lead to aging, progression towards degenerative diseases and cancers. Insight into how self-renewal and differentiation are regulated will have tremendous therapeutic impact. Drosophila is an excellent model system for stem cell study due to the availability of various mutants, markers and RNAi technology. In order to study stem cell biology, we use female Drosophila gonads, whose stem cell population – the germline stem cells (GSCs) gives rise to gametes.


The Role Of N-Myc Downstream Regulated Gene 1 In Breast Cancer Lipid Metabolism, Christopher James Sevinsky Jan 2017

The Role Of N-Myc Downstream Regulated Gene 1 In Breast Cancer Lipid Metabolism, Christopher James Sevinsky

Legacy Theses & Dissertations (2009 - 2024)

Altered carbohydrate and lipid metabolism are increasingly well characterized hallmarks of aggressive breast cancers. While aerobic glycolysis, or “the Warburg effect”, is a well-established metabolic adaptation exploited by tumor cells, the understanding of unique aspects of cancer lipid metabolism lags behind. This is especially true regarding the coordination of complex lipid synthesis and trafficking pathways, which remains poorly understood. N-Myc Downstream Regulated Gene1 (NDRG1) is overexpressed in many solid tumors, but its function is unclear. The importance of NDRG1 is best exemplified by the effect of null mutations on human physiology: inactivating mutations give rise to the severe autosomal recessive …


Myoepithelial Cell Morphogenesis And Differentiation In The Mouse Submandibular Salivary Gland In Development And Disease, Elise Marie Gervais Jan 2015

Myoepithelial Cell Morphogenesis And Differentiation In The Mouse Submandibular Salivary Gland In Development And Disease, Elise Marie Gervais

Legacy Theses & Dissertations (2009 - 2024)

Organogenesis is the process by which tissues organize, gain considerable size, and undergo cellular differentiation or specialization to form fully functional organs. To study the processes involved in organogenesis of branched organs, the mouse submandibular salivary gland is frequently used as a model system, as it can undergo morphogenesis and differentiation and be genetically manipulated ex vivo. The mouse submandibular salivary gland undergoes a specific process of outgrowth and invagination known as branching morphogenesis which allows for the significant increase in gland size and complexity, as well as maximization of surface area for secretion of saliva. Surrounding the mouse submandibular …


Using A Novel Multiplexing Method To Track Cell Populations And Cytodifferentiation During Development Of The Submandibular Salivary Gland, Charles Thomas Manhardt Jan 2015

Using A Novel Multiplexing Method To Track Cell Populations And Cytodifferentiation During Development Of The Submandibular Salivary Gland, Charles Thomas Manhardt

Legacy Theses & Dissertations (2009 - 2024)

The development of submandibular salivary glands is complex and requires coordination of specific signaling events. Submandibular salivary glands originate as an epithelial invagination into the adjacent mesenchyme that leads to a single stalk and end bud; this end bud will go through a clefting process. Numerous rounds of clefting will lead to a fully developed salivary gland by this process, which is known as branching morphogenesis. As the gland undergoes morphogenesis, specific cues leading to differentiation of multiple cell types and even epithelial sub classes are required. By the later stages of development the glands are fully innervated, have an …


Molecular Actions Of The Vitamin D Receptor In Breast Cancer, Erika Laporta Jan 2014

Molecular Actions Of The Vitamin D Receptor In Breast Cancer, Erika Laporta

Legacy Theses & Dissertations (2009 - 2024)

1,25-Dihydroxyvitamin D (1,25D) exerts anti-cancer actions through the vitamin D receptor (VDR) but the specific targets that mediate these effects remain to be defined. In these studies, growth and genomic responses to 1,25D were evaluated in a cellular model system derived from mammary tumors generated in VDR knockout (KO) and wildtype (WT) mice. WT145 cells (derived from WT tumors) expressed VDR and were growth inhibited by 1,25D, whereas KO240 cells (derived from VDRKO tumors) lacked VDR and were not growth inhibited by 1,25D. KO240 cell clones stably expressing VDR (KOhVDR cells) were sensitized to 1,25D mediated growth arrest. Genomic profiling …


Mechanisms Of Age-Related Inflammation And Cancer : The Synergistic Effect Of Oxidants And Calcium, Donald A. Mccarthy Jan 2014

Mechanisms Of Age-Related Inflammation And Cancer : The Synergistic Effect Of Oxidants And Calcium, Donald A. Mccarthy

Legacy Theses & Dissertations (2009 - 2024)

The accumulation of senescent cells during the process of aging has been implicated as causal in numerous age-related pathologies. Senescent cells adopt a secretory phenotype consisting of many factors including matrix remodeling enzymes, growth factors, cytokines, and chemokines. Their secretory nature is the primary reason that they are associated with disease, but it remains unclear why they become so inflammatory. Using primary human fibroblasts cultured to senescence, we mechanistically determined why senescent cells are such potent inducers of inflammation. Our findings indicate that the early production of the cytokine Interleukin 1-α (IL-1α) is central to this transition. We found that …


Characterizing The Effects Of Glutaraldehyde On The Ryanodine Receptor Calcium Release Channel, Joshua Dov Strauss Jan 2013

Characterizing The Effects Of Glutaraldehyde On The Ryanodine Receptor Calcium Release Channel, Joshua Dov Strauss

Legacy Theses & Dissertations (2009 - 2024)

Ryanodine receptors (RyR) are large intracellular calcium release channels, which


Regulation Of The Aryl Hydrocarbon Receptor And The Signal Transducer And Activator Of Transcription 1 By Long-Term Estrogen Exposure In Breast Carcinoma Cells, Neal Englert Jan 2011

Regulation Of The Aryl Hydrocarbon Receptor And The Signal Transducer And Activator Of Transcription 1 By Long-Term Estrogen Exposure In Breast Carcinoma Cells, Neal Englert

Legacy Theses & Dissertations (2009 - 2024)

The risk of developing breast cancer is known to be associated with a woman's lifetime exposure to estrogens, both endogenous and exogenous. Increased exposure to estrogens stimulates cellular proliferation, which is a widely accepted theory of estrogen receptor positive mammary carcinogenesis. The molecular mechanisms of gene expression regulation in response to long-term estrogen exposure (LTEE) of MCF-7 breast cancer cells were addressed in this study, with a focus on the aryl hydrocarbon receptor (AHR) and signal transducer and activator of transcription 1 (STAT1).


The Role Of Trm9 In Stress Responses, Ashish Ravindra Patil Jan 2011

The Role Of Trm9 In Stress Responses, Ashish Ravindra Patil

Legacy Theses & Dissertations (2009 - 2024)

Cells need to respond appropriately to environmental changes in order to maintain homeostasis. The cellular response to an environmental stress is regulated at transcriptional, translational and post translational levels. The tRNA, which acts as an adaptor molecule between the mRNA and the protein, plays an important role in the translational regulation of cellular responses to stress and is one of the most heavily modified biomolecules. In Saccharomyces cerevisiae , the wobble uracil of the tRNA(3'-UCU-5') Arg, tRNA(3'-UUC-5') Glu and certain other specific tRNAs are modified to 5-methoxycarbonylmethyluridine (mcm5U) and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) residues by the tRNA methyltransferase 9 (Trm9). Modifications at …


An Rnai Screen Targeting The Protein Tyrosine Kinases Identifies Bruton's Tyrosine Kinase (Btk) As A Breast Cancer Cell Survival Factor, Cheryl Lynne Eifert Jan 2009

An Rnai Screen Targeting The Protein Tyrosine Kinases Identifies Bruton's Tyrosine Kinase (Btk) As A Breast Cancer Cell Survival Factor, Cheryl Lynne Eifert

Legacy Theses & Dissertations (2009 - 2024)

The receptor protein tyrosine kinases (RPTKs) and the non- receptor protein tyrosine kinases (PTKs) are among the most commonly up-regulated genes found in all types of cancers. Although, a large body of data implicates a majority of tyrosine kinases (TKs) in cancer, few have been extensively evaluated for any potential therapeutic benefit in any of the many subtypes of breast cancer. We have used RNA interference (RNAi) to perform a large-scale loss-of-function analysis to facilitate the identification of individual factors necessary for the survival of an ErbB2 positive breast cancer cell line. We have found that 30% of the TKs …