Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Creating A Protein Chimera To Study Regulation Of Muscle Diversity, Shannon Scarboro May 2021

Creating A Protein Chimera To Study Regulation Of Muscle Diversity, Shannon Scarboro

Symposium of Student Scholars

Creating a protein chimera to study regulation of muscle diversity.

Body muscles are made of many individual super-cells, called muscle fibers, that have distinct properties and determine every individual’s strength and endurance. Initially all muscle fibers have identical characteristics, but become differentiated into specific types in adults. The mechanism of such transition is not well understood, despite its obvious importance for shaping human physicality.

Remarkable conservation of the muscle tissue enables us to use fruit flies to study the mechanisms of muscle fiber diversity. We hypothesized that the transcription factor Mef2 acts as a molecular switch that activates structural genes …


Identification Of The E3 Ligase That Directs The Degradation Of Proteins That Control Cell Fate Decisions In Yeast, Prasanna Tati, Stephen D Willis, Katrina F. Cooper May 2021

Identification Of The E3 Ligase That Directs The Degradation Of Proteins That Control Cell Fate Decisions In Yeast, Prasanna Tati, Stephen D Willis, Katrina F. Cooper

Rowan-Virtua Research Day

The ubiquitin–proteasome system (UPS) and autophagy pathways are distinct, highly conserved proteolytic systems that play important roles in maintaining cellular homeostasis in response to environmental cues [1]. The goal of this project is to identify the E3 ligase that mediates the degradation of cyclin C following nitrogen starvation in yeast using quantitative Western blot analysis of cyclin C-myc following nitrogen starvation in mutants of known Ubc4/5 interacting E3 ligases. No potential E3 ligases were identified as stable after 4 hours of nitrogen starvation, suggesting redundancy in function.


216— Loss Of Function Mutation For Tp53 Does Not Rescue The Chaf1bNt2 Small-Eye Phenotype In Danio Rerio, Alex Parks Apr 2021

216— Loss Of Function Mutation For Tp53 Does Not Rescue The Chaf1bNt2 Small-Eye Phenotype In Danio Rerio, Alex Parks

GREAT Day Posters

In Zebrafish, the chromosome assembly factor 1b (chaf1b) gene is in part responsible for the development of the eye. In homozygous chaf1bt24412 mutants retinal cell death is promoted through cell-death promoting activity of the gene, tumor suppressor protein p53 (tp53), resulting in a small-eye phenotype. Another allele chaf1bnt2, was found to also result in the small-eye phenotype when in a homozygous state. We found that knockdown of Tp53 protein via morpholino antisense oligonucleotide injection of 1-2 cell stage embryos failed to rescue retinal cell death of chaf1bnt2 homozygous mutants as detected by TUNEL labeling. Because morpholinos may fail to fully …