Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Gonads Without Glp-1: Silencing Glp-1 In The Male Somatic Gonad In Caenorhabditis Elegans, Matthew Titus Apr 2023

Gonads Without Glp-1: Silencing Glp-1 In The Male Somatic Gonad In Caenorhabditis Elegans, Matthew Titus

Undergraduate Theses

In C. elegans, the gene glp-1 encodes for a Notch receptor called GLP-1, one of two found in C. elegans’ genome. The gene has been previously implicated in the development of the hermaphroditic germline as well as playing a role in the mitosis/meiosis decision. Genetic screening has further identified it as potentially playing a role in the development of the male somatic gonad, making it an ideal candidate for a reverse genetic. We did this by silencing glp-1 and observing if any alterations to the gonad’s phenotype occur.

Normally this could be done by performing a gene knockout. …


Search For Palladin, An Actin-Associated Protein, In Pig Retinal Pigmented Epithelium And Its Role In Epithelial-Mesenchymal Transition, Katrina Powell May 2021

Search For Palladin, An Actin-Associated Protein, In Pig Retinal Pigmented Epithelium And Its Role In Epithelial-Mesenchymal Transition, Katrina Powell

Undergraduate Theses

This study investigates the expression of Palladin, a phosphoprotein product of the PALLD gene, in the retinal pigmented epithelium (RPE). Palladin is an actin cross-linking protein and plays a role in cell adhesion and motility. Published reports have demonstrated that a down regulation of Palladin in colon cancer cells results in a reorganization of the actin cytoskeleton, causing the cells to lose their typical shape, become proliferative and migratory. This process is otherwise known as epithelial-mesenchymal transition (EMT). A similar EMT phenomenon is observed when the RPE is exposed to the vitreous humor in patients with proliferative vitreoretinopathy (PVR). In …


Investigations Into The Cellular Target Of 4-Trifluoromethoxy Chalcone Via Darts Method, Jordan Stacy Apr 2021

Investigations Into The Cellular Target Of 4-Trifluoromethoxy Chalcone Via Darts Method, Jordan Stacy

Undergraduate Theses

Cellular drug target discovery is an important step in any drugs journey from bench to bedside. This is true for our lab's molecule of interest, the Chalcone. The Chalcone molecule and its derivatives have been identified as small, plant-derived secondary metabolites that, when interacting with human cancer cell lines, trigger apoptotic pathways leading to varying levels of cell death. One derivative, 4-Trifluoromethoxy Chalcone (4TFM), was identified through screenings as inducing the highest death rate in A549 cancer cells, in conjunction with having the lowest IC50, making it a good candidate to use in searching for the currently unknown cellular target …