Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

University of South Florida

Theses/Dissertations

C. elegans

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Regulation Of The Heat Shock Response Via Lysine Acetyltransferase Cbp-1 And In Neurodegenerative Disease In Caenorhabditis Elegans, Lindsey N. Barrett Jul 2022

Regulation Of The Heat Shock Response Via Lysine Acetyltransferase Cbp-1 And In Neurodegenerative Disease In Caenorhabditis Elegans, Lindsey N. Barrett

USF Tampa Graduate Theses and Dissertations

The decline of proteostasis is a hallmark of aging that is, in part, affected by the dysregulation of the heat shock response (HSR), a highly conserved cellular response to proteotoxic stress in the cell. The heat shock transcription factor HSF-1 is well-studied as a key regulator of proteostasis, but mechanisms that could be used to modulate HSF-1 function to enhance proteostasis during aging are largely unknown. In this study, we examined lysine acetyltransferase regulation of the HSR and HSF-1 in C. elegans. We performed an RNA interference screen of lysine acetyltransferases and examined mRNA expression of the heat-shock inducible gene …


Uncovering Transcriptional Activators And Targets Of Hsf-1 In Caenorhabditis Elegans, Jessica Brunquell Apr 2017

Uncovering Transcriptional Activators And Targets Of Hsf-1 In Caenorhabditis Elegans, Jessica Brunquell

USF Tampa Graduate Theses and Dissertations

In order to survive, cells must be able to cope with a variety of environmental stressors. The heat shock response (HSR) is a pro-survival mechanism employed by cells in response to protein denaturing stress, such as heat. Since its discovery in 1960, the heat shock response has been found to be regulated by the transcription factor heat shock factor 1 (HSF1). During periods of increased stress, HSF1 undergoes a multi-step process of activation that involves homotrimerization, DNA-binding, and post-translational regulatory modifications, all of which ultimately function to control the transcription of chaperone genes. These chaperone genes encode molecular chaperone proteins …


The Effects Of Supplemented Metabolites On Lifespan And Stress Response Pathways In Caenorhabditis Elegans, Clare B. Edwards Jan 2015

The Effects Of Supplemented Metabolites On Lifespan And Stress Response Pathways In Caenorhabditis Elegans, Clare B. Edwards

USF Tampa Graduate Theses and Dissertations

Understanding how metabolites contribute to anaplerosis, antioxidant effects, and hormetic pathways during aging is fundamental to creating supplements and dietary habits that may decrease age-associated disease and decline, thus improving the quality of life in old age. In order to uncover metabolic pathways that delay aging, the effects of large sets of metabolites associated with mitochondrial function on lifespan were investigated.

Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in C. elegans. Addition of fumarate and succinate also extended lifespan and all three metabolites activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced …


Sirt1 Regulation Of The Heat Shock Response In An Hsf1-Dependent Manner And The Impact Of Caloric Restriction, Rachel Rene Raynes Jan 2013

Sirt1 Regulation Of The Heat Shock Response In An Hsf1-Dependent Manner And The Impact Of Caloric Restriction, Rachel Rene Raynes

USF Tampa Graduate Theses and Dissertations

The heat shock response (HSR) is the cell's molecular reaction to protein damaging stress and is critical in the management of denatured proteins. Activation of HSF1, the master transcriptional regulator of the HSR, results in the induction of molecular chaperones called heat shock proteins (HSPs). Transcription of hsp genes is promoted by the hyperphosphorylation of HSF1, while the attenuation of the HSR is regulated by a dual mechanism involving negative feedback inhibition from HSPs and acetylation at a critical lysine residue within the DNA binding domain of HSF1, which results in a loss of affinity for DNA. SIRT1 is a …