Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Dynamics Of Site Search Process And Formation Of Synaptosome Assembly Characterized By Single Molecule Approaches, Sridhar Vemulapalli Aug 2023

Dynamics Of Site Search Process And Formation Of Synaptosome Assembly Characterized By Single Molecule Approaches, Sridhar Vemulapalli

Theses & Dissertations

Genome dynamics and integrity are the two crucial features defining the successful functioning of cells and their maintenance and evolution. The genetic processes in the cell require distant communications between the regulatory regions controlled by specific proteins. Mistakes in this interaction process will lead to termination of the genetic process may lead to the cell damage, disease development or the cell death. Similar distant regulatory process is required for numerous genome integration systems such as Variable Diversity Joining (V(D)J) recombination system resulting in the specificity of the immunoresponse, a defining property of the adaptive immune system. A common feature of …


Novel Mechanisms Of Protein Kinase C Α Regulation And Function, Xinyue Li Dec 2022

Novel Mechanisms Of Protein Kinase C Α Regulation And Function, Xinyue Li

Theses & Dissertations

Protein kinase Cα (PKCα) is a member of the PKC family of serine/threonine kinases, which have been implicated in regulation of many cellular processes, including cell proliferation, differentiation, survival, and transformation. A large body of evidence from the Black laboratory and others support an anti-proliferative function of PKCα in normal epithelial tissues, including the intestinal mucosa and endometrial epithelium. PKCα is also tumor suppressive in epithelial cancers, such as colorectal cancer (CRC) and endometrial cancer (EC). However, a major obstacle to harnessing the tumor suppressive functions of PKCα to benefit patients is the widespread loss of PKCα expression in tumors. …


Dysregulation Of Mir-10a Promotes Cancer Features In Cholangiocarcinoma, Matthieu Spriet Aug 2022

Dysregulation Of Mir-10a Promotes Cancer Features In Cholangiocarcinoma, Matthieu Spriet

Theses & Dissertations

Cholangiocarcinoma is a primary liver cancer of the bile duct epithelium that exhibits microRNA-mediated control of tumor cell signaling. Strides toward new treatment rest on a better defining of cholangiocarcinoma tumor biology including the RNA-based layer of regulation. Additionally, there is a gap in knowledge on microRNA expression in human tissue. While there is RNA-seq data of microRNA expression in tissue, it does not differentiate between cell types, thus leaving unanswered questions about cell specific microRNA biology and expression.

Here, we identify miR-10a as an oncogenic microRNA acting through MAPK signaling. Using cholangiocarcinoma cell lines, we determined miR-10a is an …


Mechanisms Of Sorting And Fission At The Endosomes, Kanika Dhawan May 2022

Mechanisms Of Sorting And Fission At The Endosomes, Kanika Dhawan

Theses & Dissertations

Endocytic trafficking is a fundamental cellular process that regulates the transport of lipids and proteins. Our lab focuses on the intracellular trafficking of receptors involved in cellular processes such as cell division, migration, and proliferation. Accordingly, the regulation of these trafficking pathways is tightly controlled, involving a complex series of events, of which a key step is the endosomal fission. Perturbations in the endosomal network can eventually lead to impaired receptor recycling to the plasma membrane (PM) and, therefore, have pathological consequences like Alzheimer’s disease and multiple cancers. Upon internalization, cargo-laden vesicles released from the PM fuse with the sorting …


Novel Molecular Mechanisms Of C-Terminal Eps15 Homology Domain (Ehd) Proteins In Endocytic Trafficking And Primary Ciliogenesis, Tyler M. Jones May 2022

Novel Molecular Mechanisms Of C-Terminal Eps15 Homology Domain (Ehd) Proteins In Endocytic Trafficking And Primary Ciliogenesis, Tyler M. Jones

Theses & Dissertations

Endocytic membrane trafficking is a key cellular process that is critical for regulating the transport of internalized cargoes such as lipids and receptors. Our lab focuses on understanding the mechanisms and cellular functions of the proteins that regulate this pathway. One family of proteins that has seen significant interest over recent years is the C-terminal Eps15 Homology Domain (EHD) family of proteins. Mammalians have four EHD paralogs (EHD1-4) that are expressed ubiquitously in tissues. These proteins have distinct yet overlapping functions in regulating endocytic pathways. EHD1 has been shown to induce constriction and is recruited to induce fission of tubular …


Probing The Role Of Astrocytes In The Pathology Of Fragile X Syndrome With Human Stem Cells, Baiyan Ren Dec 2021

Probing The Role Of Astrocytes In The Pathology Of Fragile X Syndrome With Human Stem Cells, Baiyan Ren

Theses & Dissertations

Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder related to intellectual disability and the most common monogenic cause of autism spectrum disorder. FXS is mainly caused by an expansion of CGG repeats in the 5’-untranslated region of fragile X mental retardation 1 (FMR1) gene, leading to the loss of expression of fragile X mental retardation protein (FMRP). Astrocytes are the most abundant glial cells in the central nervous system (CNS). Loss of FMRP in astrocytes has been found to contribute to structural and functional synaptic deficits in the Fmr1-KO mouse model. The contribution of human astrocytes, however, to the …


Functional Characterization Of Cancer-Associated Dna Polymerase Ε Variants, Stephanie R. Barbari Dec 2021

Functional Characterization Of Cancer-Associated Dna Polymerase Ε Variants, Stephanie R. Barbari

Theses & Dissertations

Replicative DNA polymerases ε (Polε) and δ (Polδ) achieve high fidelity DNA synthesis through a precise balance of polymerization and exonucleolytic proofreading. Errors that escape proofreading are corrected by DNA mismatch repair (MMR). Ultramutated human cancers with proficient MMR carry alterations in the exonuclease domain of Polε, which were initially predicted to abolish proofreading. However, functional studies in yeast of the most recurrent Polε-P286R variant suggested defects beyond a loss of exonuclease activity. Indeed, biochemical analysis of the yeast Polε-P286R analog revealed increased polymerization capacity in addition to decreased proofreading, which enables efficient mismatch extension and bypass of replication-blocking non-B …


Nuclear Receptor Coactivator 3 In Endoplasmic Reticulum Stress And Stress Granule Dynamics In Pancreatic Cancer, Andrew Kisling Dec 2021

Nuclear Receptor Coactivator 3 In Endoplasmic Reticulum Stress And Stress Granule Dynamics In Pancreatic Cancer, Andrew Kisling

Theses & Dissertations

Pancreatic cancer is predicted to be the second-leading cause of cancer-related deaths within the next decade. Nuclear receptor coactivator 3 (NCOA3/SRC3/AIB1) regulates an array of metabolic and signaling pathways and has been established by our group and others as a critical regulator pancreatic cancer progression and metastasis. A recent study demonstrated NCOA3 regulation by the IRE1α-XBP1 axis of the unfolded protein response (UPR), suggesting a link between NCOA3 and cellular stress management. Furthermore, NCOA3 has been shown to directly bind to a scaffolding protein of stress granules (SGs). Since SG assembly is regulated by the UPR, we hypothesized that NCOA3 …


Usp11 And Usp7 Deubiquitinases Regulate Sprtn Auto-Proteolysis And Sprtn-Mediated Dna-Protein Crosslink Repair, Megan C. Perry Dec 2021

Usp11 And Usp7 Deubiquitinases Regulate Sprtn Auto-Proteolysis And Sprtn-Mediated Dna-Protein Crosslink Repair, Megan C. Perry

Theses & Dissertations

DNA repair pathways that recognize and remove damaged DNA are vital for maintenance of genomic stability and prevention of tumorigenesis. Conversely, these pathways may be robust in tumor cells, thus diminishing the anti-cancer potential of available therapies. DNA-protein crosslinks (DPCs) are particularly deleterious DNA adducts that occur when proteins become irreversibly covalently bound to the DNA. DPCs represent a diverse group of lesions, as any protein can be crosslinked to the DNA duplex by non-specific crosslinking agents like reactive aldehydes and radiation. Additionally, functional DNA-binding proteins such as topoisomerases may become permanently crosslinked to DNA ends by abortive enzymatic processes …


A Pkcα-Mediated Growth Suppressive Mek-Erk Signaling Axis In Intestinal Epithelial Cells, Navneet Kaur Dec 2021

A Pkcα-Mediated Growth Suppressive Mek-Erk Signaling Axis In Intestinal Epithelial Cells, Navneet Kaur

Theses & Dissertations

Members of the protein kinase C (PKC) family of serine/threonine kinases are involved in regulation of fundamental cellular functions, including proliferation, differentiation, survival, migration, and transformation. Increasing evidence points to anti-proliferative and tumor suppressive role of PKCs. Our laboratory and others have reported that the classical PKC isozyme, PKCαnegatively regulates proliferation and tumorigenesis in the intestinal epithelium. Our laboratory has further determined that PKCα signaling induces a program of cell cycle withdrawal in intestinal epithelial cells that involves downregulation of the pro-proliferative proteins, cyclin D1 and Id1, and upregulation of the cyclin dependent kinase (CDK) inhibitor, p21Cip1. Unexpectedly, …


Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon Dec 2021

Molecular Mechanisms Of Aberrant Protein Glycosylation In Pancreatic Cancer Stemness And Metastasis, Frank Leon

Theses & Dissertations

A myriad of genetic and other abnormal changes underlies the aggressiveness and dissemination properties observed in pancreatic cancer (PC). Aberrant protein glycosylation is a commonly observed feature in PC. The modification of protein O-glycosylation is mediated by glycosyltransferases, which attach and sequentially elongate monosaccharides on Serine/Threonine (Ser/Thr) motifs. Aberrant glycosylation is recognized as an emerging hallmark of cancer where a disruption in normal glycosylation results in irregular O-glycans.

This dissertation research has investigated the consequences of aberrant protein glycosylation on stemness and enhancement of metastatic properties in pancreatic ductal adenocarcinoma (PDAC). Several publications have reported aberrant O-glycosylation increases in oncogenic …


Fgfr4 Glycosylation And Processing In Cholangiocarcinoma Promote Cancer Signaling, Andrew J. Phillips Aug 2021

Fgfr4 Glycosylation And Processing In Cholangiocarcinoma Promote Cancer Signaling, Andrew J. Phillips

Theses & Dissertations

Cholangiocarcinoma is a cancer of cholangiocytes, or epithelial cells lining the biliary tract. It is associated with a poor prognosis and additional therapeutic treatments are needed to help patients affected by this disease. Fibroblast growth factor receptor 4 (FGFR4) is receptor tyrosine kinase that is involved in various physiologic and pathologic processes. TCGA analysis of thirty different tumor types showed the highest FGFR4 mRNA levels in cholangiocarcinoma. At the protein level, FGFR4 was observed in the majority of cholangiocarcinomas screened and, higher levels were associated with a poorer prognosis. FGFR4 is an N-linked glycosylated receptor tyrosine kinase that we show …


Role Of Endocytic Machinery Regulators In Egfr Traffic And Viral Entry, Insha Mushtaq May 2021

Role Of Endocytic Machinery Regulators In Egfr Traffic And Viral Entry, Insha Mushtaq

Theses & Dissertations

STUDY 1: Role of endocytic regulator EHD1 and its binding partner RUSC2 in EGFR traffic

Abstract

Epidermal growth factor receptor (EGFR) is a prototype receptor tyrosine kinase and an oncoprotein in many solid tumors. Cell surface display of EGFR is essential for cellular responses to its ligands. While post activation endocytic trafficking of EGFR has been well elucidated, little is known about mechanisms of basal/pre-activation surface display of EGFR. Here, we identify a novel role of the endocytic regulator EHD1 and a potential EHD1 partner, RUSC2, in cell surface display of EGFR. EHD1 and RUSC2 colocalize with EGFR in vesicular/tubular …


Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu Dec 2020

Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu

Theses & Dissertations

Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, is a superoxide dismutase (SOD) mimic and a known radioprotector of normal tissues. Our recent work demonstrates that MnTE-2-PyP also inhibits prostate cancer progression with radiotherapy; however, the mechanisms remain unclear. In this thesis, we identified that MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting growth of prostate cancer cells. We found that MnTE-2-PyP induced protein oxidations in PC3 cells and one major group of oxidized protein targets were involved in energy metabolism. The oxidative phosphorylation rates were significantly enhanced in both PC3 and LNCaP cells with MnTE-2-PyP treatment, but mitochondrial …


Molecular Insights Into Paf-1 Mediated Pancreatic Homeostasis, Stemness, And Cancer Progression, Saswati Karmakar May 2020

Molecular Insights Into Paf-1 Mediated Pancreatic Homeostasis, Stemness, And Cancer Progression, Saswati Karmakar

Theses & Dissertations

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease that has one of the lowest 5-year survival rates among cancers, at just 9%. This grim prognosis is primarily due to the extensive metastatic spread of tumor cells beyond the pancreas at diagnosis and the inability of current therapeutic modalities to treat this aggressive disease effectively. Given that the cancer cells in pancreatic tumors are heterogeneous, the major culprit for cancer initiation, progression, and metastasis remains elusive. Recent studies provide evidence for the existence of highly tumorigenic and drug-resistant cells that are capable of tumor initiation, known as the cancer stem cells …


Hdac1 Is A Required Cofactor Of Cbfβ-Smmhc And A Therapeutic Target In Inversion 16 Acute Myeloid Leukemia, Lisa E. Richter Dec 2019

Hdac1 Is A Required Cofactor Of Cbfβ-Smmhc And A Therapeutic Target In Inversion 16 Acute Myeloid Leukemia, Lisa E. Richter

Theses & Dissertations

Acute myeloid leukemia (AML) is a neoplastic disease characterized by the uncontrolled proliferation and accumulation of immature myeloid cells. A common mutation in AML is the inversion of chromosome 16 [inv(16)], which generates a fusion between the genes for core binding factor beta (CBFB) and smooth muscle myosin heavy chain (MYH11), forming the oncogene CBFB-MYH11. The expressed protein, CBFβ-SMMHC, forms a heterodimer with the key hematopoietic transcription factor RUNX1. Although CBFβ-SMMHC was previously thought to dominantly repress RUNX1, recent work suggests that CBFβ-SMMHC functions together with RUNX1 to activate transcription of specific target genes.

Targeting the …


The Role Of Reactive Oxygen Species In Regulating Macrophage And Fibroblast Activation Within The Breast Cancer Tumor Microenvironment, Brandon J. Griess Dec 2019

The Role Of Reactive Oxygen Species In Regulating Macrophage And Fibroblast Activation Within The Breast Cancer Tumor Microenvironment, Brandon J. Griess

Theses & Dissertations

The tumor microenvironment (TME) is a key determining factor in breast cancer, especially the more aggressive subtype triple negative breast cancer (TNBC). The activated fibroblasts and macrophages within the TME have many tumor promoting functions. Therefore, targeting their activation presents a novel therapeutic approach in TNBC. My work studied the role of reactive oxygen species (ROS) during fibroblast and macrophage activation in breast cancer.

My studies showed that expression of the secreted antioxidant enzyme, EcSOD, is silenced in breast cancer samples, in part, via increased promoter methylation. The re-expression of EcSOD inhibited c-Met activation in the TNBC cell line, MDA-MB231. …


Defining The Role Of Tyrosine Phosphorylation In The Regulation Of Connexin43 In Cardiac Diseases, Li Zheng Dec 2019

Defining The Role Of Tyrosine Phosphorylation In The Regulation Of Connexin43 In Cardiac Diseases, Li Zheng

Theses & Dissertations

Connexins are integral membrane proteins that oligomerize to form gap junction channels. Ions and small molecules diffuse intercellularly through these channels, allowing individual cellular events to synchronize into the functional response of an entire organ. Gap junction channels composed of Connexin43 (Cx43) mediate electrical coupling and impulse propagation in the normal working myocardium. In the failing heart, Cx43 remodeling (decreased expression, altered phosphorylation state, loss at intercalated discs, and increased presence at lateral membranes) contributes to rhythm disturbances and contractile dysfunction. While there is considerable information regarding key interactions of Cx43 in the regulation of gap junction channels, unfortunately, the …


Ecdysoneless, A Novel Regulator Of Ca2+ Homeostasis And Metabolism, Aniruddha Sarkar Dec 2019

Ecdysoneless, A Novel Regulator Of Ca2+ Homeostasis And Metabolism, Aniruddha Sarkar

Theses & Dissertations

The hallmarks of cancer include sustained proliferation and survival in the face of cellular stresses imposed by the oncogenic drive, as well as metabolic rewiring for tumor growth under adverse nutritional conditions. Adaptive alterations in key biochemical networks that underlie metabolic rewiring represent potential opportunities to develop new therapeutic strategies against cancer.

My thesis focuses on mammalian Ecdysoneless (ECD), a conserved homolog of the fly Ecdysoneless gene product, which engages fundamental cell biological processes of ER stress, Ca2+ signaling and metabolism to help sustain the oncogenic drive in tumor cells. Recent studies from our laboratory provide a clear evidence …


Delivery Of Small Molecule And Rna Using Synthetic Polymeric Micelles And Multifunctional Exosomes For The Treatment Of Type 1 Diabetes, Yang Peng Dec 2019

Delivery Of Small Molecule And Rna Using Synthetic Polymeric Micelles And Multifunctional Exosomes For The Treatment Of Type 1 Diabetes, Yang Peng

Theses & Dissertations

Type 1 diabetes is one of the most challenging chronic autoimmune diseases. The destruction and dysfunction of insulin-secreting β cells are the results of inflammatory infiltration and the synergistic effect of multiple immune cells. The aim of this dissertation is to develop novel and reliable therapeutic approaches to advance the treatment of T1D: including chemical modification of a broad-spectrum immunosuppressant, co-application of small molecule based immune intervention and siRNA based β cell preservative therapy, and administration of a PI3K-δ/γ dual inhibitor to specifically target immune cells, utilizing synthetic polymeric micelles or natural produced multi-functional exosomes derived from human bone marrow …


Brca1 & Ctdp1 Brct Domainomics In The Dna Damage Response, Kimiko L. Krieger Dec 2019

Brca1 & Ctdp1 Brct Domainomics In The Dna Damage Response, Kimiko L. Krieger

Theses & Dissertations

Genomic instability is one of the enabling characteristics of cancer. DNA damage response pathways are important for genomic integrity and cell cycle progression. Defects in DNA damage repair can often lead to cell cycle arrest, cell death, or tumorigenesis. The activation of the DNA damage response includes tightly regulated signaling cascades that involve kinase phosphorylation and modular domains that scaffold phosphorylated motifs to coordinate recruitment of DNA repair proteins. Modular domains are conserved tertiary structures of a protein that can fold, function, and evolve independently from an intact protein. One of the most common modular domains involved in DNA damage …


The Role Of Ros In The Progression And Treatment Of Castration-Resistant Prostate Cancer, Dannah R. Miller May 2019

The Role Of Ros In The Progression And Treatment Of Castration-Resistant Prostate Cancer, Dannah R. Miller

Theses & Dissertations

Prostate cancer is the second leading cause of cancer-related deaths in U.S. men, primarily due to the development of castration-resistant (CR) prostate cancer (PCa), of which there are no effective treatment options. Reactive oxygen species (ROS) plays a critical role in prostate carcinogenesis, including the progression of the CR PCa phenotype. ROS regulates both cell proliferation and apoptosis; a moderate increase in ROS can promote proliferation; however, a substantial rise in ROS levels will result in apoptosis. Oxidase p66Shc is elevated in clinical PCa cells and has been associated with a metastatic phenotype of CR PCa cells, promoting PCa cell …


Identification Of Pathways Required For The Survival Of Inversion(16) Acute Myeloid Leukemia, Yiqian Wang May 2019

Identification Of Pathways Required For The Survival Of Inversion(16) Acute Myeloid Leukemia, Yiqian Wang

Theses & Dissertations

Inversion of chromosome 16 [inv(16)] acute myeloid leukemia (AML) generates a fusion gene CBFB-MYH11. Approximately half of inv(16) AML patients eventually relapse mainly due to the existence of leukemia stem cells (LSCs). Previous work using a Cbfb-MYH11 knockin mouse model showed that the LSCs are enriched within CSF2RB- population. Another gene upregulated by Cbfb-MYH11 encodes the cytokine receptor IL1RL1. Using Cbfb-MYH11 knockin mice, we showed that LSCs exist in multiple sub-populations defined by their immunophenotype, and IL1RL1 is expressed by cell populations with high LSC activity. We also found that treatment of IL-33, the ligand for IL1RL1, promoted …


Developing Targeted Therapy Against Pancreatic Cancer, Garima Kaushik May 2019

Developing Targeted Therapy Against Pancreatic Cancer, Garima Kaushik

Theses & Dissertations

Not available.


Delineation Of New Mechanisms Of Dna Double Strand Break Repair, Songli Zhu Dec 2018

Delineation Of New Mechanisms Of Dna Double Strand Break Repair, Songli Zhu

Theses & Dissertations

DNA damage is frequently induced in cells by both endogenous and exogenous agents. DNA damage, particular double strand breaks (DSBs) may lead to genomic instability, and the progression of cancer, aging, neurodegeneration, and other human diseases. The cell employs two major DSB repair pathways, including homologous recombination (HR) and Non-homologous end joining (NHEJ), but the detailed mechanisms of DSB repair remain to be further revealed.

In the first part of this study, we characterized a plasmid-based assay to investigate NHEJ repair in Xenopus egg extracts. Our data argued for a preference for the precise repair by the NHEJ machinery and …


Intra- And Inter-Molecular Signaling In A Cardiac Connexin: Role Of Cytoplasmic Domain Dimerization And Phosphorylation, Andrew J. Trease Dec 2018

Intra- And Inter-Molecular Signaling In A Cardiac Connexin: Role Of Cytoplasmic Domain Dimerization And Phosphorylation, Andrew J. Trease

Theses & Dissertations

As critical mediators of cell-to-cell communication, gap junctions (GJs) are comprised of membrane channels that directly link the cytoplasm of adjacent coupled cells thereby allowing for the passage of ions, small metabolites, and secondary messengers. Each channel is formed by the apposition of two connexons from adjacent cells, each composed of six connexin (Cx) proteins. Each GJ channel functions to promote signal propagation and synchronization of cells and tissues in organs. Furthermore, GJs are essential for proper propagation of cardiac action potentials from one cell to the next, leading to the coordinated contraction and relaxation of heart muscle powering circulation. …


The Beta-Catenin/Muc1.Ct Interaction In Pancreatic Cancer, Edwin Wiest May 2018

The Beta-Catenin/Muc1.Ct Interaction In Pancreatic Cancer, Edwin Wiest

Theses & Dissertations

MUC1 is overexpressed in over 90% of pancreatic cancer cases, and its interaction with beta-catenin promotes progression of the disease. Various in vitro and in vivo methods show that beta-catenin and MUC1 interact by way of the cytoplasmic tail of MUC1 (MUC1.CT). This interaction occurs in the membrane of pancreatic cancer cells but is found to a smaller extent in the nucleus as well. Biophysical methods suggest that MUC1 interacts with beta-catenin through a sequence of amino acids in the tail of MUC1 that sit very near the transmembrane domain of MUC1. In pancreatic ductal adenocarcinoma cells, it appears that …


Metabolic Reprogramming Of Pancreatic Ductal Adenocarcinoma Cells In Response To Chronic Low Ph Stress, Jaime Abrego Dec 2017

Metabolic Reprogramming Of Pancreatic Ductal Adenocarcinoma Cells In Response To Chronic Low Ph Stress, Jaime Abrego

Theses & Dissertations

Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal of all cancers with a 5-year survival rate of only 8.2%. This is because PDAC is diagnosed in its advanced stages and is characterized by radio and chemotherapy resistance. Aggressiveness of PDAC tumors is attributed to its high metabolic phenotype, which is characterized by increased glycolysis rate and lactate secretion, while oxidative metabolism is reduced. These metabolic features are required to fulfill the biosynthetic demands of proliferating PDAC cells. However, this increase in metabolic activity results in acidification of the extracellular space because the dense fibrotic stroma of PDAC tumors limits …


Role Of Ezrin In Colorectal Cancer Cell Survival Regulation, Premila Leiphrakpam Dec 2017

Role Of Ezrin In Colorectal Cancer Cell Survival Regulation, Premila Leiphrakpam

Theses & Dissertations

Colorectal cancer (CRC) is the second most common cause of cancer related deaths in the United States, mainly due to metastasis to the distant organ sites. However, the molecular basis of CRC metastasis is poorly understood. Therefore, identification and characterization of novel potential anti-cancer therapeutic targets CRC is of urgent need. Utilizing a 2D-DIGE proteomics approach ezrin was identified as a protein that is differentially expressed between primary colon tumors xenografts, orthotopically implanted in athymic nude mice, and corresponding and liver metastatic deposits. Ezrin, a cytoskeletal protein belonging to the ezrin–radixin–moesin (ERM) family plays important roles in cell motility, invasion …


Molecular Mechanisms Of C-Terminal Eps15 Homology Domain Containing (Ehd) Protein Function, Kriti Bahl Aug 2017

Molecular Mechanisms Of C-Terminal Eps15 Homology Domain Containing (Ehd) Protein Function, Kriti Bahl

Theses & Dissertations

Endocytic trafficking is not only an essential process for the maintenance of cellular homeostasis but also plays a vital role in regulating diverse cellular processes such as signaling, migration and cell division. The C-terminal Eps 15 Homology Domain proteins (EHD1-4) play pivotal roles in regulating distinct steps of endocytic trafficking. Among the EHDs, EHD2 is disparate both in terms of sequence homology (70%) and its subcellular localization at the caveolae. The crystal structure of EHD2 has been solved and it contains an unstructured loop consisting of two proline-phenylalanine (PF) motifs: KPFRKLNPF. However, the other paralogs EHD1, …