Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Probing For Binding Regions Of The Ftsz Protein Surface Through Site-Directed Insertions: Discovery Of Fully Functional Ftsz-Fluorescent Proteins, Desmond A. Moore, Zakiya N. Whatley, Chandra P. Joshi, Masaki Osawa, Harold P. Erickson Jan 2017

Probing For Binding Regions Of The Ftsz Protein Surface Through Site-Directed Insertions: Discovery Of Fully Functional Ftsz-Fluorescent Proteins, Desmond A. Moore, Zakiya N. Whatley, Chandra P. Joshi, Masaki Osawa, Harold P. Erickson

Biology Faculty Publications

FtsZ, a bacterial tubulin homologue, is a cytoskeletal protein that assembles into protofilaments that are one subunit thick. These protofilaments assemble further to form a “Z ring” at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane and also serves as a scaffold to recruit cell wall remodeling proteins for complete cell division in vivo. One model of the Z ring proposes that protofilaments associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of Escherichia coli FtsZ …


Germline Transgenic Methods For Tracking Cells And Testing Gene Function During Regeneration In The Axolotl, Shahryar Khattak, Maritta Schuez, Tobias Richter, Dunja Knapp, Saori L. Haigo, Tatiana Sandoval-Guzmán, Kristyna Hradlikova, Annett Duemmler, Ryan R. Kerney, Elly M. Tanaka Jun 2013

Germline Transgenic Methods For Tracking Cells And Testing Gene Function During Regeneration In The Axolotl, Shahryar Khattak, Maritta Schuez, Tobias Richter, Dunja Knapp, Saori L. Haigo, Tatiana Sandoval-Guzmán, Kristyna Hradlikova, Annett Duemmler, Ryan R. Kerney, Elly M. Tanaka

Biology Faculty Publications

The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum(axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly …