Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

City University of New York (CUNY)

Publications and Research

ALS

Articles 1 - 1 of 1

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Mutant Tdp-43 Does Not Impair Mitochondrial Bioenergetics In Vitro And In Viv, Hibiki Kawamata, Pablo Peixoto, Csaba Konrad, Gloria Palomo, Kirsten Bredvik, Meri Gerges, Federica Valsecchi, Leonard Petrucelli, John M. Ravits, Anatoly Starkov, Giovanni Manfredi May 2017

Mutant Tdp-43 Does Not Impair Mitochondrial Bioenergetics In Vitro And In Viv, Hibiki Kawamata, Pablo Peixoto, Csaba Konrad, Gloria Palomo, Kirsten Bredvik, Meri Gerges, Federica Valsecchi, Leonard Petrucelli, John M. Ravits, Anatoly Starkov, Giovanni Manfredi

Publications and Research

Background: Mitochondrial dysfunction has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Functional studies of mitochondrial bioenergetics have focused mostly on superoxide dismutase 1 (SOD1) mutants, and showed that mutant human SOD1 impairs mitochondrial oxidative phosphorylation, calcium homeostasis, and dynamics. However, recent reports have indicated that alterations in transactivation response element DNA-binding protein 43 (TDP-43) can also lead to defects of mitochondrial morphology and dynamics. Furthermore, it was proposed that TDP-43 mutations cause oxidative phosphorylation impairment associated with respiratory chain defects and that these effects were caused by mitochondrial localization of the mutant …