Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology

Theses/Dissertations

2019

Institution
Keyword
Publication

Articles 1 - 27 of 27

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Hdac1 Is A Required Cofactor Of Cbfβ-Smmhc And A Therapeutic Target In Inversion 16 Acute Myeloid Leukemia, Lisa E. Richter Dec 2019

Hdac1 Is A Required Cofactor Of Cbfβ-Smmhc And A Therapeutic Target In Inversion 16 Acute Myeloid Leukemia, Lisa E. Richter

Theses & Dissertations

Acute myeloid leukemia (AML) is a neoplastic disease characterized by the uncontrolled proliferation and accumulation of immature myeloid cells. A common mutation in AML is the inversion of chromosome 16 [inv(16)], which generates a fusion between the genes for core binding factor beta (CBFB) and smooth muscle myosin heavy chain (MYH11), forming the oncogene CBFB-MYH11. The expressed protein, CBFβ-SMMHC, forms a heterodimer with the key hematopoietic transcription factor RUNX1. Although CBFβ-SMMHC was previously thought to dominantly repress RUNX1, recent work suggests that CBFβ-SMMHC functions together with RUNX1 to activate transcription of specific target genes.

Targeting the …


The Role Of Reactive Oxygen Species In Regulating Macrophage And Fibroblast Activation Within The Breast Cancer Tumor Microenvironment, Brandon J. Griess Dec 2019

The Role Of Reactive Oxygen Species In Regulating Macrophage And Fibroblast Activation Within The Breast Cancer Tumor Microenvironment, Brandon J. Griess

Theses & Dissertations

The tumor microenvironment (TME) is a key determining factor in breast cancer, especially the more aggressive subtype triple negative breast cancer (TNBC). The activated fibroblasts and macrophages within the TME have many tumor promoting functions. Therefore, targeting their activation presents a novel therapeutic approach in TNBC. My work studied the role of reactive oxygen species (ROS) during fibroblast and macrophage activation in breast cancer.

My studies showed that expression of the secreted antioxidant enzyme, EcSOD, is silenced in breast cancer samples, in part, via increased promoter methylation. The re-expression of EcSOD inhibited c-Met activation in the TNBC cell line, MDA-MB231. …


Brca1 & Ctdp1 Brct Domainomics In The Dna Damage Response, Kimiko L. Krieger Dec 2019

Brca1 & Ctdp1 Brct Domainomics In The Dna Damage Response, Kimiko L. Krieger

Theses & Dissertations

Genomic instability is one of the enabling characteristics of cancer. DNA damage response pathways are important for genomic integrity and cell cycle progression. Defects in DNA damage repair can often lead to cell cycle arrest, cell death, or tumorigenesis. The activation of the DNA damage response includes tightly regulated signaling cascades that involve kinase phosphorylation and modular domains that scaffold phosphorylated motifs to coordinate recruitment of DNA repair proteins. Modular domains are conserved tertiary structures of a protein that can fold, function, and evolve independently from an intact protein. One of the most common modular domains involved in DNA damage …


Mechanisms And Consequences Of Myb Gene Activation In Salivary Gland Tumors, Candace Frerich Dec 2019

Mechanisms And Consequences Of Myb Gene Activation In Salivary Gland Tumors, Candace Frerich

Biomedical Sciences ETDs

Salivary gland adenoid cystic carcinoma (ACC) is an aggressive tumor with a tendency to infiltrate surrounding nerves and metastasize to distant sites. The standard treatment often fails to control local tumor recurrence and distant metastases and no approved targeted therapeutic options exist for these tumors. The goal of our studies was to reveal the molecular mechanisms driving ACC tumor development and novel drug targets to improve patient morbidity and mortality.

We first analyzed clinical and RNA-sequencing (RNA-seq) data for 68 formalin-fixed paraffin-embedded (FFPE) ACC tumor samples and described previously unappreciated molecular heterogeneity that predicts patient outcome. The poor outcome subgroup …


Environmental Risk Factors For Inflammatory Bowel Disease: Triclosan And Other Consumer Antimicrobials, Katherine Z. Sanidad Oct 2019

Environmental Risk Factors For Inflammatory Bowel Disease: Triclosan And Other Consumer Antimicrobials, Katherine Z. Sanidad

Doctoral Dissertations

Inflammatory bowel disease (IBD) has become a serious health problem since the incidence and prevalence of IBD has dramatically increased throughout the world. There is evidence that environmental factors are primarily responsible for the increase of IBD, therefore, it is important to identify novel environmental risk factors to reduce the risk of IBD and its associated diseases. Antimicrobials used in consumer products might serve as environmental risk factors for IBD and its associated diseases. Triclosan (TCS), triclocarban (TCC), benzalkonium chloride (BAC), benzethonium chloride (BET), and chloroxylenol (PCMX) are widely used antimicrobial ingredients in consumer products and are ubiquitous contaminants in …


Towards A Mathematical Model Of Motility Using Dictyostelium Discoideum: Proteins And Geometric Features That Regulate Bleb-Based Motility, Zully Santiago Sep 2019

Towards A Mathematical Model Of Motility Using Dictyostelium Discoideum: Proteins And Geometric Features That Regulate Bleb-Based Motility, Zully Santiago

Dissertations, Theses, and Capstone Projects

A variety of biological functions depend on actin organization. The organization of actin is tightly regulated by a plethora of extracellular and intracellular signaling, scaffolding, and actin-binding proteins. Dysfunctions in this regulation lead to immune diseases, increased susceptibility to pathogens, neurodegenerative diseases, developmental disorders, and cancer metastasis. A variety of actin-dependent processes, including cell motility, are regulated by several proteins of interest: Paxillin, a scaffolding protein; WASP, an actin nucleating protein; SCAR/WAVE, another WASP family actin nucleating protein; Talin, a cortex-to-membrane binding protein; Myosin II, an F-actin contracting motor protein; and Protein Kinase C, a protein kinase. D. discoideum cells …


Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao Aug 2019

Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao

Dissertations & Theses (Open Access)

Deubiquitinating enzymes (DUBs, also called deubiquitinases) are enzymes that remove monoubiquitin or polyubiquitin chains from target proteins. DUBs have critical roles in cell homeostasis and signal transduction, as they regulate protein degradation, subcellular localization, and protein-protein interaction. Deregulation of DUBs contributes substantially to tumor formation and progression, and therefore targeting DUBs may be a promising cancer therapy strategy. My dissertation focuses on identifying the DUBs of EZH2 and SNAI1, two proteins critical for cancer progression and metastasis, and establishing these DUBs as promising anti-cancer targets.

EZH2, the catalytic component of the PRC2 complex, silences gene transcription by histone methylation. High …


A High Throughput Assay For The Detection Of Stimulator Of Interferon Genes (Sting) Agonists, Michael J. Ingling Jul 2019

A High Throughput Assay For The Detection Of Stimulator Of Interferon Genes (Sting) Agonists, Michael J. Ingling

Graduate School of Biomedical Sciences Theses and Dissertations

The innate immune system includes a menagerie of different cell types, each with a different role in the process of monitoring the body for invaders and presenting gathered debris (antigen) to the adaptive immune system. Somatic cells have intracellular receptors for the same purpose. Cancer cells, however, have avoided these methods of detection despite, in many cases, the tumor’s immunogenic traits. Immuno-oncology is a field dedicated to the immunological traits of tumors, more recently finding ways of instigating an immune response against tumors. In this regard, STING, a receptor of cyclic dinucleotides (CDN), has come to the forefront of immuno-oncology. …


In Vitro Evaluation Of Ovarian Cancer Tumorigenesis As A Function Of Quinone Oxidoreducatse-1 And Cell Phenotype, Milcah S. Jackson Jun 2019

In Vitro Evaluation Of Ovarian Cancer Tumorigenesis As A Function Of Quinone Oxidoreducatse-1 And Cell Phenotype, Milcah S. Jackson

LSU Doctoral Dissertations

In vitro multicellular spheroids are attractive model systems for assessing genetic and epigenetic changes that occur in diseased tissues. Understanding how such alterations in gene and subsequent protein expression affect disease progression and metastasis, drug resistance, and recurrence is of great interest in cancer research. In this regard, examining expression and activity of proteins, such as those with cytoprotective ability that are overexpressed in cancer cells, in addition to cell phenotype (i.e., stem-like, epithelial, mesenchymal, or mixed), are two ways to evaluate genetic and epigenetic changes. Moreover, determining the impact that cytoprotective proteins and cell phenotype have on tumor formation …


Targeted Genome-Scale Gene Activation And Gene Editing In Human Cells To Understand Disease Models, Michael De La Cruz May 2019

Targeted Genome-Scale Gene Activation And Gene Editing In Human Cells To Understand Disease Models, Michael De La Cruz

KGI Theses and Dissertations

Since the discovery of sequence directed DNA editing reagents such as CRISPR-Cas9 RNA-guided and TALEN DNA endonucleases, there has been a snowball of advances in the life sciences due to the ability to efficiently edit and control genomes within living cells. CRISPR-Cas9 based genomic tools, which facilitate the high-throughput precise manipulation of genes, allow for unbiased functional genomic screens. We used a human CRISPR-Cas9 Synergistic Activation Mediator pooled library which utilizes an engineered protein complex for transcriptional activation of 23,430 endogenous genes to investigate the development of novel resistance mechanisms to lung cancer targeted therapy, Erlotinib. We set out to …


Developing Targeted Therapy Against Pancreatic Cancer, Garima Kaushik May 2019

Developing Targeted Therapy Against Pancreatic Cancer, Garima Kaushik

Theses & Dissertations

Not available.


The Role Of Ros In The Progression And Treatment Of Castration-Resistant Prostate Cancer, Dannah R. Miller May 2019

The Role Of Ros In The Progression And Treatment Of Castration-Resistant Prostate Cancer, Dannah R. Miller

Theses & Dissertations

Prostate cancer is the second leading cause of cancer-related deaths in U.S. men, primarily due to the development of castration-resistant (CR) prostate cancer (PCa), of which there are no effective treatment options. Reactive oxygen species (ROS) plays a critical role in prostate carcinogenesis, including the progression of the CR PCa phenotype. ROS regulates both cell proliferation and apoptosis; a moderate increase in ROS can promote proliferation; however, a substantial rise in ROS levels will result in apoptosis. Oxidase p66Shc is elevated in clinical PCa cells and has been associated with a metastatic phenotype of CR PCa cells, promoting PCa cell …


Identification Of Pathways Required For The Survival Of Inversion(16) Acute Myeloid Leukemia, Yiqian Wang May 2019

Identification Of Pathways Required For The Survival Of Inversion(16) Acute Myeloid Leukemia, Yiqian Wang

Theses & Dissertations

Inversion of chromosome 16 [inv(16)] acute myeloid leukemia (AML) generates a fusion gene CBFB-MYH11. Approximately half of inv(16) AML patients eventually relapse mainly due to the existence of leukemia stem cells (LSCs). Previous work using a Cbfb-MYH11 knockin mouse model showed that the LSCs are enriched within CSF2RB- population. Another gene upregulated by Cbfb-MYH11 encodes the cytokine receptor IL1RL1. Using Cbfb-MYH11 knockin mice, we showed that LSCs exist in multiple sub-populations defined by their immunophenotype, and IL1RL1 is expressed by cell populations with high LSC activity. We also found that treatment of IL-33, the ligand for IL1RL1, promoted …


An Oxanthroquinone Derivative Disrupts Ras Plasma Membrane Localization And Function By Inhibition Of Acylpeptide Hydrolase And Perturbation Of Sphingomyelin Metabolism, Lingxiao Tan May 2019

An Oxanthroquinone Derivative Disrupts Ras Plasma Membrane Localization And Function By Inhibition Of Acylpeptide Hydrolase And Perturbation Of Sphingomyelin Metabolism, Lingxiao Tan

Dissertations & Theses (Open Access)

Oncogenic RAS proteins are commonly expressed in human cancer. To be functional, RAS proteins must undergo post-translational modification and localize to the plasma membrane (PM). Therefore, compounds that prevent RAS PM targeting have potential as putative RAS inhibitors. Here we examined the mechanism of action of oxanthroquinone G01 (G01), a recently described inhibitor of KRAS PM localization. We show that G01 mislocalized HRAS and KRAS from the PM with similar potency and disrupted the spatial organization of RAS proteins remaining on the PM. G01 also inhibited recycling of epidermal growth factor receptor and transferrin receptor, but did not impair internalization …


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …


Cellular Localization Of Rad51d Mutant Proteins And The Application Of Art To Increase Scientific Literacy In America, Claire L. Chabot May 2019

Cellular Localization Of Rad51d Mutant Proteins And The Application Of Art To Increase Scientific Literacy In America, Claire L. Chabot

Senior Theses

Ovarian cancers are the leading cause of death from cancer of the female reproductive system. Approximately 50% of ovarian cancers have defects in the homologous recombination (HR) DNA repair pathway that is required for the repair of DNA double-stranded breaks. The status of HR genes, such as BRCA1, BRCA2, and the RAD51 family, contributes to ovarian cancer development as well as treatment decisions regarding chemotherapy, radiation, and immunotherapy. The overarching goal of this project is to identify new insights into HR that can integrate with Precision Medicine Initiatives and align with the goals of the Cancer Moonshot 2020 Program. I …


Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu May 2019

Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu

Graduate Theses and Dissertations

Ipomoeassin F is a flagship congener of a resin glycoside family that inhibits growth of many tumor cell lines with only single-digital nanomolar IC50 values. However, biological and pharmacological mechanisms of ipomoeassin F have been undefined. To facilitate exploration of the biological and pharmacological properties, we performed sophisticate SAR (Structure–activity relationship) studies of ipomoeassin F to understand its pharmacophore and structure properties so that we can design favorable probes for further biological investigation. By applying appropriate deviates that possess fluorescent groups and similar bio-activity, the target protein was found to be localized in endoplasmic reticulum (ER). Through biotin affinity pull …


The Role And Regulation Of Alternative Polyadenylation In The Dna Damage Response, Michael R. Murphy May 2019

The Role And Regulation Of Alternative Polyadenylation In The Dna Damage Response, Michael R. Murphy

Dissertations, Theses, and Capstone Projects

Cellular homeostasis is achieved by the dynamic flux in gene expression. Post-transcriptional regulation of coding and non-coding RNA offers a fast method of adapting to a changing cellular environment, including deadenylation, microRNA (miRNA) pathway, and alternative polyadenylation (APA). In this dissertation, I explored some of the mechanisms involved in the post-transcriptional regulation of gene expression. The main hypothesis in these studies is that a single APA event after DNA damage is governed by specific conditions and factors outside of current known regulators of APA, and that the resultant transcript has a role in the DNA damage response (DDR). My aims …


Paraoxonase 2 Is Critical For Non-Small Cell Lung Carcinoma Proliferation., Aaron Whitt May 2019

Paraoxonase 2 Is Critical For Non-Small Cell Lung Carcinoma Proliferation., Aaron Whitt

Electronic Theses and Dissertations

Non-small cell lung carcinoma (NSCLC) comprises 85% of lung cancer diagnoses and is plagued by drug resistance. Thus, elucidating the underlying mechanisms of NSCLC is paramount to expand future treatment options. Paraoxonase 2 (PON2), an intracellular enzyme with arylesterase and lactonase functions, has well-established anti-atherosclerotic activity. Recent studies show PON2 is overexpressed in a variety of tumors and confers drug resistance, although these interactions have not been thoroughly examined in NSCLC. Thus, we sought to investigate the role of PON2 in cellular proliferation using PON2-knockout mice, primary mouse cells, and NSCLC cell lines. Using these approaches, we demonstrate that PON2 …


Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey Apr 2019

Mechanisms Of Oriented Cell Division And Their Roles In Tissue Development, Evan Blake Dewey

Biology ETDs

Properly executed cell division is crucial to development, maintenance, and longevity of multicellular organisms. Defects in both symmetric and asymmetric divisions can lead to improper developmental patterning, as well as genomic instability, disruption of tissue homeostasis, and cancer. Our research focuses on how regulators orchestrate proper cell divisions. Mushroom Body Defect (Mud) is one such regulator, and here we describe how Mud is regulated via the Hippo signaling pathway kinase Warts (Wts), showing Wts phosphorylates Mud to enhance interaction with the polarity protein Partner of Inscuteable, promoting spindle orientation activity. We next focus on another regulator, Shortstop (Shot), describing a …


The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou Jan 2019

The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou

Theses and Dissertations--Molecular and Cellular Biochemistry

RBMS3 belongs to the family of c-myc gene single-strand binding proteins (MSSPs) that play important roles in transcriptional regulation. Here, we show that RBMS3 functions as a tumor promoter in triple-negative breast cancer (TNBC), a highly aggressive BC subtype. Analysis of RBMS3 expression shows that RBMS3 is upregulated at both mRNA and protein levels in TNBC cells. Functionally, overexpression of RBMS3 increases cell migration, invasion and cancer stem cell (CSC) behaviors. Moreover, RBMS3 induces expression of epithelial-mesenchymal transition (EMT) and CSC markers. Conversely, loss of RBMS3 in TNBC BT549 cells inhibits cell proliferation, migration and mesenchymal phenotype. Correlation analysis shows …


Effectiveness And Mechanism Of Action Of Modified Porphyrins For Photodynamic Therapy Of Triple Negative Breast Cancer Cells, Hannah Brandon Jan 2019

Effectiveness And Mechanism Of Action Of Modified Porphyrins For Photodynamic Therapy Of Triple Negative Breast Cancer Cells, Hannah Brandon

Honors Theses

Triple negative breast cancer (TNBC) is a particularly aggressive form of breast cancer that lacks the three molecules typically targeted for treatment. Standard treatment methods leave much to be desired--the rates of metastasis and recurrence are high and the prognosis for most patients with TNBC is poor. One potential treatment for TNBC is photodynamic therapy (PDT), which uses compounds called photosensitizers that are taken up by all tissues in the body. The tumor is exposed to light, activating the photosensitizer and creating reactive oxygen species that cause cell death. This method is relatively pain-free, effective, and does not harm cells …


Eralpha Isoforms Modulate The Tumorigenicity Of 24r,25(Oh)2d3 In Estrogen-Responsive Cancer, Anjali Verma Jan 2019

Eralpha Isoforms Modulate The Tumorigenicity Of 24r,25(Oh)2d3 In Estrogen-Responsive Cancer, Anjali Verma

Theses and Dissertations

Over 200,000 cases of breast cancer are diagnosed every year. Nearly 20% of these patients supplement their diets with some form of vitamin D. This high frequency of vitamin D supplement use may be due in part to research suggesting that cancer patients with higher serum vitamin D3 levels have better prognoses than patients with low serum vitamin D3. However, double-blind clinical trials on the efficacy of vitamin D3 supplementation in breast cancer have been inconclusive. A recent meta-analysis showed evidence of reduced cancer recurrence in patients taking vitamin D3 supplements who had ‘estrogen receptor positive’ …


Investigation Of The Interactions Between The Dream Complex And Hpv16, Kevin Ko Jan 2019

Investigation Of The Interactions Between The Dream Complex And Hpv16, Kevin Ko

Theses and Dissertations

According to the American Cancer Society, it has been estimated that in 2019 alone, there will be approximately 53,000 new cases of oropharyngeal cancers. Oropharyngeal cancers are the largest subset of head and neck squamous cell carcinomas (HNSCCs), which are the sixth most common cancer across worldwide populations. They, along with other HNSCCs, fall under a category of cancers known as Human papillomavirus (HPV)-associated cancers, and it has been found that upwards of 70% of these cancers can be attributed to high-risk HPV infections.

Specifically, the high-risk HPV gene, E7, plays a key role in relieving cell cycle repression by …


Characterizing Chromosomal Aberrations In Cells Deficient For Both Atm And Msh2, Yeliz Inalman Jan 2019

Characterizing Chromosomal Aberrations In Cells Deficient For Both Atm And Msh2, Yeliz Inalman

Dissertations and Theses

Ataxia telangiectasia mutated (ATM) and mutS homologue 2 (MSH2) are important DNA repair proteins that participate in DNA repair pathways to maintain genomic integrity. Mice deficient for ATM and MSH2 mice are viable. However, ATM-/- mice show growth retardation, neurological defects, and spontaneous lymphomagenesis. MSH2-/- mice suffer from aggressive lymphoid tumors between two to five months of age and have increased microsatellite instability, which predisposes MSH2-/- mice to carcinomas. However, mice deficient in both ATM and MSH2 are unable to survive beyond postnatal day 21 (P21). The observed lethality in ATM-/-MSH2-/- mice may result …


Regulation Of The Long Non-Coding Rna Fam83h-As1 By Human Papillomavirus In Cervical Cancer, Jamie Ann Barr Ph.D. Jan 2019

Regulation Of The Long Non-Coding Rna Fam83h-As1 By Human Papillomavirus In Cervical Cancer, Jamie Ann Barr Ph.D.

Graduate Theses, Dissertations, and Problem Reports

Non-coding RNAs (NcRNAs), such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been found to be involved in a variety of critical biological processes, and dysregulation of ncRNAs have been involved with several human diseases including cancer.

High-risk human papillomavirus (HPV) infection is one of the first events in the process of carcinogenesis in cervical and a subset of head and neck cancers. The expression of the viral oncoproteins E6 and E7 is essential in this process by inactivating the tumor suppressor proteins p53 and Rb, respectively, in addition to their interactions with other host proteins and regulation of …


Regorafenib Enhances Lethality Of Sildenafil And Curcumin In Colorectal Cancer Cells, Kervin Benjamin Owusu Jan 2019

Regorafenib Enhances Lethality Of Sildenafil And Curcumin In Colorectal Cancer Cells, Kervin Benjamin Owusu

Theses and Dissertations

In the United States, more than 130,000 people will be diagnosed with colorectal cancer (CRC) each year and an estimated 50,000 people will die from the disease. Standard of care (SOC) therapies for CRC combine multiple cytotoxic chemotherapeutic drugs. These combinations have varying degrees of effectiveness and can often result in significant patient morbidity. For second recurrence patients, the multi-kinase inhibitor, regorafenib, is an approved agent, but is often poorly tolerated at current doses. In the current study, we propose to develop therapeutic regime of combining agents with modest toxicity profiles: curcumin and sildenafil with regorafenib. Using clinically achievable enterohepatic …