Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Cancer Biology

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 96

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Maackia Amurensis Seed Lectin (Masl) And Soluble Human Podoplanin (Shpdpn) Sequence Analysis And Effects On Human Oral Squamous Cell Carcinoma (Oscc) Cell Migration And Viability, Ariel C Yin, Cayla J Holdcraft, Eamonn J Brace, Tyler J Hellmig, Sayan Basu, Saumil Parikh, Katarzyna Jachimowska, Evelyne Kalyoussef, Dylan Roden, Soly Baredes, Eugenio M Capitle, David I Suster, Alan J Shienbaum, Caifeng Zhao, Haiyan Zheng, Kevin Balcaen, Simon Devos, Jurgen Haustraete, Mahnaz Fatahzadeh, Gary S Goldberg May 2024

Maackia Amurensis Seed Lectin (Masl) And Soluble Human Podoplanin (Shpdpn) Sequence Analysis And Effects On Human Oral Squamous Cell Carcinoma (Oscc) Cell Migration And Viability, Ariel C Yin, Cayla J Holdcraft, Eamonn J Brace, Tyler J Hellmig, Sayan Basu, Saumil Parikh, Katarzyna Jachimowska, Evelyne Kalyoussef, Dylan Roden, Soly Baredes, Eugenio M Capitle, David I Suster, Alan J Shienbaum, Caifeng Zhao, Haiyan Zheng, Kevin Balcaen, Simon Devos, Jurgen Haustraete, Mahnaz Fatahzadeh, Gary S Goldberg

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, …


A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani May 2023

A Dna-Peptide Crosslink (Dpc) Increases Mutagenicity In Sos-Induced Escherichia Coli, Alessandra Bassani

Honors Scholar Theses

Bacteria, such as Escherichia coli, have an inducible system in response to DNA damage termed the SOS response. This system is activated when the replicative DNA polymerase (Pol) III encounters a lesion, uncouples from DNA helicase, and single-stranded DNA (ssDNA) accumulates at the replication fork. In this study, we investigated DNA-peptide crosslink (DpC), a common lesion that results from cross-linking of proteins or peptides, UV irradiation, and alkylating agents. To increase survival following formation of a lesion, the SOS response can utilize homologous recombination, translesion synthesis (TLS), or excision repair. With TLS, the levels of DNA Pol II, IV, …


Investigating The Efficacy Of Tazemetosttat For In Vitro Treatment Of Human Triple Negative Breast Cancer Cells, Harshita Indukuri Apr 2022

Investigating The Efficacy Of Tazemetosttat For In Vitro Treatment Of Human Triple Negative Breast Cancer Cells, Harshita Indukuri

Honors Scholars Collaborative Projects

Cancer is a formidable, genetic disease that affects many people, either directly or indirectly. Breast cancer is the most commonly diagnosed cancer worldwide (31). Triple-negative breast cancer (TNBC) is a type of breast cancer that has a higher lethality compared to other breast cancers and has a poor prognosis due to its highly invasive nature and limited treatment options. Finding safe, effective, and accessible treatment for TNBC is integral to treating TNBC patients. Tazemetostat is an EZH2-inhibitor that has recently been approved for use in epithelioid sarcoma (23). EZH2 is an overexpressed protein in many cancers, including TNBC (11). However, …


Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov Mar 2022

Natural Phaeosphaeride A Derivatives Overcome Drug Resistance Of Tumor Cells And Modulate Signaling Pathways, Victoria Abzianidze, Natalia Moiseeva, Diana Suponina, Sofya Zakharenkova, Nadezhda Rogovskaya, Lidia Laletina, Alvin A. Holder, Denis Krivorotov, Alexander Bogachenkov, Alexander Garabadzhiu, Anton Ukolov, Vyacheslav Kosorukov

Chemistry & Biochemistry Faculty Publications

n the present study, natural phaeosphaeride A (PPA) derivatives are synthesized. Anti-tumor studies are carried out on the PC3, K562, HCT-116, THP-1, MCF-7, A549, NCI-H929, Jurkat, and RPMI8226 tumor cell lines, and on the human embryonic kidney (HEK293) cell line. All the compounds synthesized turned out to have better efficacy than PPA towards the tumor cell lines listed. Among them, three compounds exhibited an ability to overcome the drug resistance of tumor cells associated with the overexpression of the P-glycoprotein by modulating the work of this transporter. Luminex xMAP technology was used to assess the effect of five synthesized compounds …


Ultrasound 96 Probe Device Protocol For Cancer Cell Treatment, Aisling Field, Brijesh K. Tiwari, James F. Curtin, Julie R M Mondala, Janith Wanigasekara Jan 2022

Ultrasound 96 Probe Device Protocol For Cancer Cell Treatment, Aisling Field, Brijesh K. Tiwari, James F. Curtin, Julie R M Mondala, Janith Wanigasekara

Articles

Ultrasound is a sound wave with frequencies ranging between 20 kHz and 20 MHz. Ultrasound is able to temporarily and repeatedly open the BBB safely and enhance chemotherapeutic delivery without adverse effects. This novel technique in drug delivery benefits from the powerful ability of ultrasound to produce cavitation activity. Cavitation is the generation and activity of gas-filled bubbles in a medium exposed to ultrasound. As the pressure wave passes through the media, gas bubbles expand at low pressure and contract at high pressure. This leads to oscillation which produces a circulating fluid flow known as microstreaming around the bubble with …


Plasma Induced Reactive Oxygen Species-Dependent Cytotoxicity In Glioblastoma 3d Tumourspheres, Janith Wanigasekara, Carlos Barcia, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin Jan 2022

Plasma Induced Reactive Oxygen Species-Dependent Cytotoxicity In Glioblastoma 3d Tumourspheres, Janith Wanigasekara, Carlos Barcia, Patrick J. Cullen, Brijesh Tiwari, James F. Curtin

Articles

The aim of this study was to determine the effects of a pin‐to‐plate cold atmospheric plasma (CAP) on U‐251 MG three‐dimensional (3D) glioblastoma spheroids under different conditions. 3D tumorspheres showed higher resistance to the CAP treatment compared to 2D monolayer cells. A single CAP treatment was able to induce cytotoxicity, while multiple CAP treatments augmented this effect. CAP was also able to induce cytotoxicity throughout the tumoursphere, and we identified that reactive oxygen species(ROS) plays a major role, while H2O2plays a partial role in CAP‐induced cytotoxicity in tumour-spheres. We conclude that ROS‐dependent cytotoxicity is induced uniformly throughout glioblastoma and epidermoid …


Exosomal-Long Non-Coding Rnas Journey In Colorectal Cancer: Evil And Goodness Faces Of Key Players, Nehal I. Rizk, Ahmed I. Abulsoud, Mohamed M. Kamal, Dina H. Kassem, Nadia M. Hamdy Jan 2022

Exosomal-Long Non-Coding Rnas Journey In Colorectal Cancer: Evil And Goodness Faces Of Key Players, Nehal I. Rizk, Ahmed I. Abulsoud, Mohamed M. Kamal, Dina H. Kassem, Nadia M. Hamdy

Pharmacy

Exosomes are nano-vesicles (NVs) secreted by cells and take part in cell-cell communications. Lately, these exosomes were proved to have dual faces in cancer. Actually, they can contribute to carcinogenesis through epithelial-mesenchymal transition (EMT), angiogenesis, metastasis and tumor microenvironment (TME) of various cancers, including colorectal cancer (CRC). On the other hand, they can be potential targets for cancer treatment. CRC is one of the most frequent tumors worldwide, with incidence rates rising in the recent decades. In its early stage, CRC is asymptomatic with poor treatment outcomes. Therefore, finding a non-invasive, early diagnostic biomarker tool and/or suitable defender to combat …


Untargeted Lipidomics Of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes In Cancer Vs. Non-Cancer Tissue, Joshua M. Mitchell, Robert M. Flight, Hunter N. B. Moseley Oct 2021

Untargeted Lipidomics Of Non-Small Cell Lung Carcinoma Demonstrates Differentially Abundant Lipid Classes In Cancer Vs. Non-Cancer Tissue, Joshua M. Mitchell, Robert M. Flight, Hunter N. B. Moseley

Molecular and Cellular Biochemistry Faculty Publications

Lung cancer remains the leading cause of cancer death worldwide and non-small cell lung carcinoma (NSCLC) represents 85% of newly diagnosed lung cancers. In this study, we utilized our untargeted assignment tool Small Molecule Isotope Resolved Formula Enumerator (SMIRFE) and ultra-high-resolution Fourier transform mass spectrometry to examine lipid profile differences between paired cancerous and non-cancerous lung tissue samples from 86 patients with suspected stage I or IIA primary NSCLC. Correlation and co-occurrence analysis revealed significant lipid profile differences between cancer and non-cancer samples. Further analysis of machine-learned lipid categories for the differentially abundant molecular formulas identified a high abundance sterol, …


Determining The Primary Dna Substrates Of Shld2'S Ob-Fold Domains, Hari Patchigolla Oct 2021

Determining The Primary Dna Substrates Of Shld2'S Ob-Fold Domains, Hari Patchigolla

Holster Scholar Projects

Failure to repair DNA double-stranded breaks leads to cell death. Radiation therapy is commonly used to kill cancer cells by inducing these breaks. However resistance to radiation therapy, due to a hyperactive DNA double-stranded break repair pathway, is a common occurrence that makes cancer patients more prone to relapse. The Shieldin complex is shown to promote DNA-double stranded break repair by binding to DNA at sites of damage. Thus, the objective of this project is to understand the affinity and type of DNA that Shieldin binds to, through gel-shift assays, for the eventual creation of an inhibitor for this protein …


Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin Sep 2021

Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin

Publications and Research

Aurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling. While glycolysis is suppressed by AURKA inhibition, we note an increase in the oxygen consumption rate fueled by enhanced fatty acid oxidation (FAO), which was …


Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis Aug 2021

Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis

Publications and Research

The molecular evolution of medulloblastoma is more complex than previously imagined, as emerging evidence suggests that multiple interactions between the tumor cells and components of the tumor microenvironment (TME) are important for tumor promotion and progression. The identification of several molecular networks within the TME, which interact with tumoral cells, has provided new clues to understand the tumorigenic roles of many TME components as well as potential therapeutic targets. In this review, we discuss the most recent studies regarding the roles of astrocytes in supporting sonic hedgehog (SHH) subgroup medulloblastoma (MB) and provide an overview of MB progression through SHH …


Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He May 2021

Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He

Honors Scholar Theses

Ependymoma is a primary solid tumor of the central nervous system. Supratentorial ependymoma (ST-EPN), a subtype of ependymomas, is driven by an oncogenic fusion between the ZFTA and RELA genes in 70% of cases. We introduced this fusion into neural progenitor cells of mice embryos via in utero electroporation of a non-viral binary piggyBac transposon system containing ZFTA-RELA. From preliminary data in the LoTurco lab, inducing the expression of ZFTA-RELA into different neural progenitor cells produces tumors of varying lethality and cellular composition. To define the cellular composition and subclonal diversity of ST-EPN tumors, we used single cell RNA-sequencing …


Exploring The Connection Between The Spontaneous Regression Seen In Neuroblastomas, Hypertumors, And Reactive Oxygen Species, Shahad Musa, Manitha Mulpuru Jan 2021

Exploring The Connection Between The Spontaneous Regression Seen In Neuroblastomas, Hypertumors, And Reactive Oxygen Species, Shahad Musa, Manitha Mulpuru

AUCTUS: The Journal of Undergraduate Research and Creative Scholarship

Peto’s Paradox is defined as the lack of correlation between larger animals and cancer risk. Under the assumption that all cells have equal risk of becoming cancerous, larger animals should have greater rates of cancer. However, the inverse is true. Determining the cause of this variation may allow a supplemental approach to cancer treatment. A combination of two reasons may account for this correlation including hypertumors and metabolism. Hypertumors, or cheater cells, are hypothesized to suppress cancer growth through spontaneous autophagic degradation and overexpression of the RAS g-protein. Both of these characteristics are exhibited in Neuroblastomas. An anticancer drug used …


Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff Dec 2020

Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff

Honors Scholar Theses

Mechanotransduction is the process by which a mechanical stimulus is converted to a cellular signal. This process is heavily influential of cell morphology, differentiation, and behavior. However, altered levels of mechanical stimuli are also found in many pathological contexts. For example, cancerous cells have stiffer surrounding tissue than healthy cells, and research suggests that this alters cell behavior and promotes metastasis. Despite these findings, the cellular processes behind these signaling alterations remain widely unknown. Understanding these cascades is critical, as involved proteins can give us a deeper understanding of the role of mechanotransduction, and certain proteins can potentially be targeted …


Biomechanical And Biophysical Properties Of Breast Cancer Cells Under Varying Glycemic Regimens, Diganta Dutta, Xavier-Lewis Palmer, Jose Ortega-Rodas, Vasundhara Balraj, Indrani Ghosh Dastider, Surabhi Chandra Nov 2020

Biomechanical And Biophysical Properties Of Breast Cancer Cells Under Varying Glycemic Regimens, Diganta Dutta, Xavier-Lewis Palmer, Jose Ortega-Rodas, Vasundhara Balraj, Indrani Ghosh Dastider, Surabhi Chandra

Electrical & Computer Engineering Faculty Publications

Diabetes accelerates cancer cell proliferation and metastasis, particularly for cancers of the pancreas, liver, breast, colon, and skin. While pathways linking the 2 disease conditions have been explored extensively, there is a lack of information on whether there could be cytoarchitectural changes induced by glucose which predispose cancer cells to aggressive phenotypes. It was thus hypothesized that exposure to diabetes/high glucose alters the biomechanical and biophysical properties of cancer cells more than the normal cells, which aids in advancing the cancer. For this study, atomic force microscopy indentation was used through microscale probing of multiple human breast cancer cells (MCF-7, …


Profiling The Circulating Mrna Transcriptome In Human Liver Disease, Aejaz Sayeed, Brielle E Dalvano, David E Kaplan, Usha Viswanathan, John Kulp, Alhaji H Janneh, Lu-Yu Hwang, Adam Ertel, Cataldo Doria, Timothy Block Jun 2020

Profiling The Circulating Mrna Transcriptome In Human Liver Disease, Aejaz Sayeed, Brielle E Dalvano, David E Kaplan, Usha Viswanathan, John Kulp, Alhaji H Janneh, Lu-Yu Hwang, Adam Ertel, Cataldo Doria, Timothy Block

Department of Cancer Biology Faculty Papers

The human circulation contains cell-free DNA and non-coding microRNA (miRNA). Less is known about the presence of messenger RNA (mRNA). This report profiles the human circulating mRNA transcriptome in people with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) to determine whether mRNA analytes can be used as biomarkers of liver disease. Using RNAseq and RT-qPCR, we investigate circulating mRNA in plasma from HCC and LC patients and demonstrate detection of transcripts representing more than 19,000 different protein coding genes. Remarkably, the circulating mRNA expression levels were similar from person to person over the 21 individuals whose samples were analyzed by …


Size-Dependent Inhibitory Effects Of Antibiotic Nanocarriers On Filamentation Of E. Coli, Preeyaporn Songkiatisak, Feng Ding, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu May 2020

Size-Dependent Inhibitory Effects Of Antibiotic Nanocarriers On Filamentation Of E. Coli, Preeyaporn Songkiatisak, Feng Ding, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Multidrug membrane transporters exist in both prokaryotic and eukaryotic cells and cause multidrug resistance (MDR), which results in an urgent need for new and more effective therapeutic agents. In this study, we used three different sized antibiotic nanocarriers to study their mode of action and their size-dependent inhibitory effects against Escherichia coli (E. coli). Antibiotic nanocarriers (AgMUNH–Oflx NPs) with 8.6 × 102, 9.4 × 103 and 6.5 × 105 Oflx molecules per nanoparticle (NP) were prepared by functionalizing Ag NPs (2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm) with a monolayer …


Toxicity Of Novel Platinum Compounds In Mammalian Cancer Cells, Vanesa Veletanlic Apr 2020

Toxicity Of Novel Platinum Compounds In Mammalian Cancer Cells, Vanesa Veletanlic

Masters Theses & Specialist Projects

There are currently three FDA platinum compounds approved for use as chemotherapeutics, where each drug has variable efficacies for different cancer types depending on cancer’s tissue of origin. The approved compounds are platinum(II) complexes with four coordination sites on the platinum atom allowing two types of ligands to attach: leaving ligands, which are removed from the platinum atom in solution, and non-leaving ligands, which remain complexed to the platinum. Carboplatin, the preferred compound used to treat ovarian and small-cell lung cancers, has a characteristic cyclobutanedicarboxylic acid leaving ligand and two ammonia non-leaving ligands. A novel compound, 1,1-cyclobutanedicarboxylato(ethylenediamine)platinum (II), or Pt(en)CBDCA, …


Metabolic Reprogramming By C-Met Inhibition As A Targetable Vulnerability In Glioblastoma, Trang Thi Thu Nguyen, Enyuan Shang, Georg Karpel-Massler, Markus D. Siegelin Mar 2020

Metabolic Reprogramming By C-Met Inhibition As A Targetable Vulnerability In Glioblastoma, Trang Thi Thu Nguyen, Enyuan Shang, Georg Karpel-Massler, Markus D. Siegelin

Publications and Research

The elucidation of better treatments for solid tumors and especially malignant glial tumors is a priority. Better understanding of the molecular underpinnings of treatment response and resistance are critical determinants in the success for this endeavor. Recently, a battery of novel tools have surfaced that allow to interrogate tumor cell metabolism to more precise extent than this was possible in the earlier days. At the forefront of these developments are the extracellular flux and carbon tracing analyses. Through utilization of these techniques our group made the recent observation that acute and chronic c-MET inhibition drives fatty acid oxidation that in …


10th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association Jan 2020

10th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association

Annual Postdoctoral Science Symposium Abstracts

The Annual Postdoctoral Science Symposium (APSS) was initiated on August 4, 2011, by the MD Anderson Postdoctoral Association to provide a platform for talented postdoctoral fellows throughout the Texas Medical Center to present their work to a wider audience.

APSS is a scientific symposium organized by postdoctoral fellows from The University of Texas MD Anderson Cancer Center that welcomes submissions and presentations from postdoctoral fellows from all Texas Medical Center affiliated institutions and other Houston area institutions. The APSS provides a professional venue for postdoctoral scientists to develop, clarify and refine their research as result of formal reviews and critiques …


Ototoxicity Of Cisplatin, Pyriplatin, And Phenathriplatin In The Auditory Hybridoma Cell Line, Hei-Oc1, Alexandra Johnston Jan 2020

Ototoxicity Of Cisplatin, Pyriplatin, And Phenathriplatin In The Auditory Hybridoma Cell Line, Hei-Oc1, Alexandra Johnston

Mahurin Honors College Capstone Experience/Thesis Projects

Cisplatin is an anti-cancer drug which is effective against several cancers, but also causes harmful side-effects, including ototoxicity and hearing loss. While cisplatin is a bifunctional compound that forms coordinate covalent bonds with both strands of DNA, recently investigated monofunctional platinum(II) compounds bind to only one DNA strand, and may activate different cell-death mechanisms. As several monofunctional platinum(II) compounds have anti-cancer properties, but could target different cell-death pathways, they could potentially have different and reduced side-effects. In this study, the HEI-OC1 auditory hybridoma cell line was used to investigate the ototoxicity of cisplatin and two monofunctional platinum(II) compounds, phenanthriplatin and …


Cold Atmospheric Plasma Induces Silver Nanoparticle Uptake, Oxidative Dissolution And Enhanced Cytotoxicity In Glioblastoma Multiforme Cells, Eline Manaloto, Aoife Gowen, Anna Lesniak, Zhonglei He, Alan Casey, Patrick J. Cullen, James Curtin Jan 2020

Cold Atmospheric Plasma Induces Silver Nanoparticle Uptake, Oxidative Dissolution And Enhanced Cytotoxicity In Glioblastoma Multiforme Cells, Eline Manaloto, Aoife Gowen, Anna Lesniak, Zhonglei He, Alan Casey, Patrick J. Cullen, James Curtin

Articles

Silver nanoparticles (AgNP) emerged as a promising reagent for cancer therapy with oxidative stress implicated in the toxicity. Meanwhile, studies reported cold atmospheric plasma (CAP) generation of reactive oxygen and nitrogen species has selectivity towards cancer cells. Gold nanoparticles display synergistic cytotoxicity when combined with CAP against cancer cells but there is a paucity of information using AgNP, prompting to investigate the combined effects of CAP using dielectric barrier discharge system (voltage of 75 kV, current is 62.5 mA, duty cycle of 7.5kVA and input frequency of 50–60Hz) and 10 nm PVA-coated AgNP using U373MG Glioblastoma Multiforme cells. Cytotoxicity in …


Optimisation Of Estrogen Receptor Subtype-Selectivity Of A 4-Aryl-4h-Chromene Scaffold Previously Identified By Virtual Screening, Miriam Carr, Andrew Knox, Daniel Nevin, Niamh O'Boyle, Shu Wang, Billy Egan, Thomas Mccabe, Brendan Twamley, Daniela Zisterer, David Lloyd, Mary Meegan Jan 2020

Optimisation Of Estrogen Receptor Subtype-Selectivity Of A 4-Aryl-4h-Chromene Scaffold Previously Identified By Virtual Screening, Miriam Carr, Andrew Knox, Daniel Nevin, Niamh O'Boyle, Shu Wang, Billy Egan, Thomas Mccabe, Brendan Twamley, Daniela Zisterer, David Lloyd, Mary Meegan

Articles

4-Aryl-4H-Chromene derivatives have been previously shown to exhibit anti-proliferative, apoptotic and anti-angiogenic activity in a variety of tumor models in vitro and in vivo generally via activation of caspases through inhibition of tubulin polymerisation. We have previously identified by Virtual Screening (VS) a 4-aryl-4H-chromene scaffold, of which two examples were shown to bind Estrogen Receptor α and β with low nanomolar affinity and <20-fold selectivity for α over β and low micromolar anti-proliferative activity in the MCF-7 cell line. Thus, using the 4-aryl-4H-chromene scaffold as a starting point, a series of compounds with a range of basic arylethers at C-4 and modifications at the C3-ester substituent of the benzopyran ring were synthesised, producing some potent ER antagonists in the MCF-7 cell line which were highly selective for ERα (compound 35; 350-fold selectivity) or ERβ (compound 42; 170-fold selectivity).


The Role Of Inositol Polyphosphate-4-Phosphatase Type Ii B (Inpp4b) In Obese Models And Endocrine Cancers, Manqi Zhang Nov 2019

The Role Of Inositol Polyphosphate-4-Phosphatase Type Ii B (Inpp4b) In Obese Models And Endocrine Cancers, Manqi Zhang

FIU Electronic Theses and Dissertations

INPP4B is a dual-specificity phosphatase and a tumor suppressor in prostate and breast cancers. Progression of the prostate and breast cancers depends on the androgen receptor (AR) or estrogen receptor alpha (ERα) signaling, respectively. In this work we demonstrated that INPP4B reprograms ERα transcriptional activity in breast cancer. INPP4B maintains expression and protein levels of progesterone receptor (PR), an ERα direct target gene required for mammary gland development. Consistently we demonstrated that Inpp4b knockout severely impairs lateral branching in the mammary gland of maturing virgin females. In advanced prostate cancer, activation and transcriptional reprogramming of AR frequently coincides with the …


Discovery Of An Egfr Inhibitor For The Treatment Of Lung And Other Cancers, Jodie Meng '20 Nov 2019

Discovery Of An Egfr Inhibitor For The Treatment Of Lung And Other Cancers, Jodie Meng '20

Student Publications & Research

The Epidermal Growth Factor Receptor (EGFR), a transmembrane protein involved in the regulation of signaling pathways, is frequently overexpressed in epithelial tumors. First generation EGFR TKIs, such as erlotinib and gefitinib, traditionally improved outcomes for non-small-cell lung carcinoma and pancreatic cancer patients by attaching competitively and reversibly to the ATP binding domain of EGFR. Second-generation EGFR TKIs have been developed to combat resistance among patients, despite demonstrating toxic side effects. In the present study, 1400 selective inhibitors were designed based on the molecular scaffolds of first and second generation EGFR TKIs. Results were refined by parameters outlined in Lipinski’s rule. …


9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association Sep 2019

9th Annual Postdoctoral Science Symposium, University Of Texas Md Anderson Cancer Center Postdoctoral Association

Annual Postdoctoral Science Symposium Abstracts

The mission of the Annual Postdoctoral Science Symposium (APSS) is to provide a platform for talented postdoctoral fellows throughout the Texas Medical Center to present their work to a wider audience. The MD Anderson Postdoctoral Association convened its inaugural Annual Postdoctoral Science Symposium (APSS) on August 4, 2011.

The APSS provides a professional venue for postdoctoral scientists to develop, clarify, and refine their research as a result of formal reviews and critiques of faculty and other postdoctoral scientists. Additionally, attendees discuss current research on a broad range of subjects while promoting academic interactions and enrichment and developing new collaborations.


Cold Atmospheric Plasma Induces Accumulation Of Lysosomes And Caspase-Independent Cell Death In U373mg Glioblastoma Multiforme Cells, Gillian Conway, Zhonglei He, Ana L. Hutanu, George P. Cribaro, Eline Manaloto, Alan Casey, Damien Traynor, Vladimir Milosavljevic, Orla Howe, Carlos Barcia, James T. Murray, Patrick Cullen, James Curtin Sep 2019

Cold Atmospheric Plasma Induces Accumulation Of Lysosomes And Caspase-Independent Cell Death In U373mg Glioblastoma Multiforme Cells, Gillian Conway, Zhonglei He, Ana L. Hutanu, George P. Cribaro, Eline Manaloto, Alan Casey, Damien Traynor, Vladimir Milosavljevic, Orla Howe, Carlos Barcia, James T. Murray, Patrick Cullen, James Curtin

Articles

Room temperature Cold Atmospheric Plasma (CAP) has shown promising efficacy for the treatment of cancer but the exact mechanisms of action remain unclear. Both apoptosis and necrosis have been implicated as the mode of cell death in various cancer cells. We have previously demonstrated a caspase-independent mechanism of cell death in p53-mutated glioblastoma multiforme (GBM) cells exposed to plasma. The purpose of this study was to elucidate the molecular mechanisms involved in caspase-independent cell death induced by plasma treatment. We demonstrate that plasma induces rapid cell death in GBM cells, independent of caspases. Accumulation of vesicles was observed in plasma …


Effects Of Ef-24 And Cisplatin On Cancer, Renal, And Auditory Cells, Denis Hodzic Apr 2019

Effects Of Ef-24 And Cisplatin On Cancer, Renal, And Auditory Cells, Denis Hodzic

Masters Theses & Specialist Projects

Cisplatin is a chemotherapy drug effective against several forms of cancer, but can also cause serious side-effects, including nephrotoxicity and ototoxicity. Curcumin, a natural plant compound, can increase cisplatin’s anti-cancer activity and counteract cisplatin’s deleterious effect on the auditory and renal systems. Unfortunately, curcumin exhibits poor bioavailability, which has promoted interest in the development of synthetic curcumin analogs (curcuminoids) that are soluble, target cancer, and do not cause side effects. This study investigated whether the curcuminoid (3E,5E)-3,5-bis[(2-fluorophenyl) methylene]-4-piperidinone (EF-24) increases the anti-cancer effects of cisplatin against a human ovarian cancer cell line (A2780) and its cisplatin-resistant counterpart (A2780cis), while preventing …


Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

One of the major goals in large-scale genomic studies is to identify genes with a prognostic impact on time-to-event outcomes which provide insight into the disease's process. With rapid developments in high-throughput genomic technologies in the past two decades, the scientific community is able to monitor the expression levels of tens of thousands of genes and proteins resulting in enormous data sets where the number of genomic features is far greater than the number of subjects. Methods based on univariate Cox regression are often used to select genomic features related to survival outcome; however, the Cox model assumes proportional hazards …


Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

The past two decades have witnessed significant advances in high-throughput ``omics" technologies such as genomics, proteomics, metabolomics, transcriptomics and radiomics. These technologies have enabled simultaneous measurement of the expression levels of tens of thousands of features from individual patient samples and have generated enormous amounts of data that require analysis and interpretation. One specific area of interest has been in studying the relationship between these features and patient outcomes, such as overall and recurrence-free survival, with the goal of developing a predictive ``omics" profile. Large-scale studies often suffer from the presence of a large fraction of censored observations and potential …