Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

A High Throughput Assay For The Detection Of Stimulator Of Interferon Genes (Sting) Agonists, Michael J. Ingling Jul 2019

A High Throughput Assay For The Detection Of Stimulator Of Interferon Genes (Sting) Agonists, Michael J. Ingling

Graduate School of Biomedical Sciences Theses and Dissertations

The innate immune system includes a menagerie of different cell types, each with a different role in the process of monitoring the body for invaders and presenting gathered debris (antigen) to the adaptive immune system. Somatic cells have intracellular receptors for the same purpose. Cancer cells, however, have avoided these methods of detection despite, in many cases, the tumor’s immunogenic traits. Immuno-oncology is a field dedicated to the immunological traits of tumors, more recently finding ways of instigating an immune response against tumors. In this regard, STING, a receptor of cyclic dinucleotides (CDN), has come to the forefront of immuno-oncology. …


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …