Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biophysics

PDF

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 67

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Evaluation Of Extracellular Matrix Composition And Rheology As Determinants Of Growth, Invasion, And Response To Photodynamic Therapy In 3d Cell Culture Models Of Pancreatic Ductal Adenocarcinoma, Gwendolyn M. Cramer Dec 2017

Evaluation Of Extracellular Matrix Composition And Rheology As Determinants Of Growth, Invasion, And Response To Photodynamic Therapy In 3d Cell Culture Models Of Pancreatic Ductal Adenocarcinoma, Gwendolyn M. Cramer

Graduate Doctoral Dissertations

Pancreatic ductal adenocarcinoma (PDAC) is a notoriously lethal disease characterized by prominent stromal involvement, which plays complex roles in regulating tumor growth and therapeutic response. The extracellular matrix (ECM)-rich stroma has been implicated as a barrier to drug penetration, although stromal depletion strategies have had mixed clinical success. It remains less clear how biophysical interactions with the ECM regulate invasive progression and susceptibilities to specific therapies. Here, an integrative approach combining 3D cell culture and quantitative imaging techniques is used to evaluate invasive behavior and motility as determinants of response to classical chemotherapy and photodynamic therapy (PDT), in which light …


Developing Algorithms For Quantifying The Super Resolution Microscopic Data: Applications To The Quantification Of Protein-Reorganization In Bacteria Responding To Treatment By Silver Ions, Sai Divya Challapalli Dec 2017

Developing Algorithms For Quantifying The Super Resolution Microscopic Data: Applications To The Quantification Of Protein-Reorganization In Bacteria Responding To Treatment By Silver Ions, Sai Divya Challapalli

Graduate Theses and Dissertations

Histone-like nucleoid structuring proteins (HNS) play significant roles in shaping the chromosomal DNA, regulation of transcriptional networks in microbes, as well as bacterial responses to environmental changes such as temperature fluctuations. In this work, the intracellular organization of HNS proteins in E. coli bacteria was investigated utilizing super-resolution fluorescence microscopy, which surpasses conventional microscopy by 10–20 fold in spatial resolution. More importantly, the changes of the spatial distribution of HNS proteins in E. coli, by addition of silver ions into the growth medium were explored. To quantify the spatial distribution of HNS in bacteria and its changes, an automatic method …


18f-Fdg Pet/Ctct-Based Radiomics For The Prediction Of Radiochemotherapy Treatment Outcomes Of Cervical Cancer, Badereldeen Abdulmajeed Altazi Nov 2017

18f-Fdg Pet/Ctct-Based Radiomics For The Prediction Of Radiochemotherapy Treatment Outcomes Of Cervical Cancer, Badereldeen Abdulmajeed Altazi

USF Tampa Graduate Theses and Dissertations

Cervical cancer remains the third most commonly diagnosed gynecological malignancy in the United States and throughout the world despite being potentially preventable. Patients diagnosed with cervical cancer may develop local recurrence in the cervix and surrounding structures (vaginal apex, parametrial, or paracervical), regional recurrence in pelvic lymph nodes, distant metastasis, or a combination of all. The management of such treatment outcomes has not been subject to rigorous investigation. Therefore, there is a need for studies and clinical trials that focus on decision making to support the choice of the best treatment modality that leads to the minimal number of adverse …


A Budding-Defective M2 Mutant Exhibits Reduced Membrane Interaction, Insensitivity To Cholesterol, And Perturbed Interdomain Coupling, A. L. Herneisen, I. D. Sahu, R. M. Mccarrick, J. B. Feix, G. A. Lorigan, Kathleen P. Howard Nov 2017

A Budding-Defective M2 Mutant Exhibits Reduced Membrane Interaction, Insensitivity To Cholesterol, And Perturbed Interdomain Coupling, A. L. Herneisen, I. D. Sahu, R. M. Mccarrick, J. B. Feix, G. A. Lorigan, Kathleen P. Howard

Chemistry & Biochemistry Faculty Works

Influenza A M2 is a membrane-associated protein with a C-terminal amphipathic helix that plays a cholesterol-dependent role in viral budding. An M2 mutant with alanine substitutions in the C-terminal amphipathic helix is deficient in viral scission. With the goal of providing atomic-level understanding of how the wild-type protein functions, we used a multipronged site-directed spin labeling electron paramagnetic resonance spectroscopy (SDSL-EPR) approach to characterize the conformational properties of the alanine mutant. We spin-labeled sites in the transmembrane (TM) domain and the C-terminal amphipathic helix (AH) of wild-type (WT) and mutant M2, and collected information on line shapes, relaxation rates, membrane …


Disorder Levels Of C-Myb Transactivation Domain Regulate Its Binding Affinity To The Kix Domain Of Creb Binding Protein, Anusha Poosapati Nov 2017

Disorder Levels Of C-Myb Transactivation Domain Regulate Its Binding Affinity To The Kix Domain Of Creb Binding Protein, Anusha Poosapati

USF Tampa Graduate Theses and Dissertations

Intrinsically disordered proteins (IDPs) do not form stable tertiary structures like their ordered partners. They exist as heterogeneous ensembles that fluctuate over a time scale. Intrinsically disordered regions and proteins are found across different phyla and exert crucial biological functions. They exhibit transient secondary structures in their free state and become folded upon binding to their protein partners via a mechanism called coupled folding and binding. Some IDPs form alpha helices when bound to their protein partners. We observed a set of cancer associated IDPs where the helical binding segments of IDPs are flanked by prolines on both the sides. …


Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes Nov 2017

Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes

Department of Biochemistry and Molecular Biology Faculty Papers

BACKGROUND: The affinities of DNA binding proteins for target sites can be used to model the regulation of gene expression. These proteins can bind to DNA cooperatively, strongly impacting their affinity and specificity. However, current methods for measuring cooperativity do not provide the means to accurately predict binding behavior over a wide range of concentrations.

METHODS: We use standard computational and mathematical methods, and develop novel methods as described in Results.

RESULTS: We explore some complexities of cooperative binding, and develop an improved method for relating in vitro measurements to in vivo function, based on ternary complex formation. We derive …


Thermodynamic And Kinetic Aspects Of Hen Egg White Lysozyme Amyloid Assembly, Tatiana Miti Nov 2017

Thermodynamic And Kinetic Aspects Of Hen Egg White Lysozyme Amyloid Assembly, Tatiana Miti

USF Tampa Graduate Theses and Dissertations

Deposition of protein fibers with a characteristic cross-β sheet structure is the molecular marker associated with human disorders ranging from Alzheimer's disease to type II diabetes and spongiform encephalopathy. Given the large number of non-disease related proteins and peptides that have been shown to form amyloid fibrils in vitro, it has been suggested that amyloid fibril formation represents a generic protein phase transition. In the last two decades it has become clear that the same protein/peptide can assemble into distinct morphologically and structurally amyloid aggregates depending on the solution conditions. Moreover, recent studies have shown that the early stage, oligomeric …


The Behavior Response Of Antlion Larvae To Alternating Magnetic Fields, Lindsey Wagner, Caleb L. Adams Oct 2017

The Behavior Response Of Antlion Larvae To Alternating Magnetic Fields, Lindsey Wagner, Caleb L. Adams

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Activation Of The Phospholipid Scramblase Tmem16f By Nanosecond Pulsed Electric Field (Nspef) Facilitates Its Diverse Cytophysiological Effects, Claudia Muratori, Andrei G. Pakhomov, Elena Gianulis, Jade Meads, Maura Casciola, Peter A. Mollica, Olga N. Pakhomova Oct 2017

Activation Of The Phospholipid Scramblase Tmem16f By Nanosecond Pulsed Electric Field (Nspef) Facilitates Its Diverse Cytophysiological Effects, Claudia Muratori, Andrei G. Pakhomov, Elena Gianulis, Jade Meads, Maura Casciola, Peter A. Mollica, Olga N. Pakhomova

Bioelectrics Publications

Nanosecond pulsed electric fields (nsPEF) are emerging as a novel modality for cell stimulation and tissue ablation. However, the downstream protein effectors responsible for nsPEF bioeffects remain to be established. Here we demonstrate that nsPEF activate TMEM16F (or Anoctamin 6), a protein functioning as a Ca2+-dependent phospholipid scramblase and Ca2+-activated chloride channel. Using confocal microscopy and patch clamp recordings, we investigated the relevance of TMEM16F activation for several bioeffects triggered by nsPEF, including phosphatidylserine (PS) externalization, nanopore-conducted currents, membrane blebbing, and cell death. In HEK 293 cells treated with a single 300-ns pulse of 25.5 kV/cm, …


Computational Investigation Of The Pore Formation Mechanism Of Beta-Hairpin Antimicrobial Peptides, Richard Lipkin Sep 2017

Computational Investigation Of The Pore Formation Mechanism Of Beta-Hairpin Antimicrobial Peptides, Richard Lipkin

Dissertations, Theses, and Capstone Projects

β-hairpin antimicrobial peptides (AMPs) are small, usually cationic peptides that provide innate biological defenses against multiple agents. They have been proposed as the basis for novel antibiotics, but their pore formation has not been directly observed on a molecular level. We review previous computational studies of peptide-induced membrane pore formation and report several new molecular dynamics simulations of β-hairpin AMPs to elucidate their pore formation mechanism. We simulated β-barrels of various AMPs in anionic implicit membranes, finding that most of the AMPs’ β-barrels were not as stable as those of protegrin. We also performed an optimization study of protegrin β-barrels …


Insight Into The Interaction Between The Peroxisome Proliferator-Activated Receptor Gamma (Pparγ) And Adipocyte Fatty Acid-Binding Protein (A-Fabp), Qian Wang Sep 2017

Insight Into The Interaction Between The Peroxisome Proliferator-Activated Receptor Gamma (Pparγ) And Adipocyte Fatty Acid-Binding Protein (A-Fabp), Qian Wang

Dissertations, Theses, and Capstone Projects

The Adipocyte Fatty Acid-Binding Protein (AFABP) is mainly expressed in fat cells. It can bind fatty acids and other lipophilic substances such as eicosanoids and retinoids. The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor protein that requires ligand binding to regulate the specific gene transcription. PPARγ is expressed at extremely high levels in adipose tissue, macrophages, and the large intestine, where it controls lipid adipogenesis and energy conversion. Moreover, it has been found that AFABP and PPARγ can form a complex in vivo. It is proposed that AFABP carries the ligand and enters into the nucleus where it …


Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong Aug 2017

Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong

Biology Faculty Publications

Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination > wood frogs alone > bullfrogs in combination …


Sequence Determinants Of The Individual And Collective Behaviour Of Intrinsically Disordered Proteins, Alexander S. Holehouse Aug 2017

Sequence Determinants Of The Individual And Collective Behaviour Of Intrinsically Disordered Proteins, Alexander S. Holehouse

Arts & Sciences Electronic Theses and Dissertations

Intrinsically disordered proteins and protein regions (IDPs) represent around thirty percent of the eukaryotic proteome. IDPs do not fold into a set three dimensional structure, but instead exist in an ensemble of inter-converting states. Despite being disordered, IDPs are decidedly not random; well-defined - albeit transient - local and long-range interactions give rise to an ensemble with distinct statistical biases over many length-scales. Among a variety of cellular roles, IDPs drive and modulate the formation of phase separated intracellular condensates, non-stoichiometric assemblies of protein and nucleic acid that serve many functions. In this work, we have explored how the amino …


Determining The Molecular Mechanisms Of Huntington’S Disease Through Multi-Scale Modeling, Kiersten Ruff Aug 2017

Determining The Molecular Mechanisms Of Huntington’S Disease Through Multi-Scale Modeling, Kiersten Ruff

Arts & Sciences Electronic Theses and Dissertations

Huntington’s disease (HD) is associated with a mutational CAG repeat expansion within exon 1 of the huntingtin (Htt) gene. Post-transcriptional processing leads to the generation of N-terminal Htt protein fragments (Htt-NTFs), including those that encompass exon 1 (Httex1). Within Httex1, the CAG-repeat encoded polyglutamine (polyQ) tract is flanked N-terminally by a 17-residue amphipathic stretch (N17) and C-terminally by a 50-residue proline rich (PR) domain. Htt-NTFs, including Httex1, are among the smallest fragments that recapitulate HD pathology in mouse models. However, the direct link between Htt-NTFs with polyQ expansions and neurodegeneration that leads to HD remains unresolved. Despite being a monogenic …


Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan Aug 2017

Bacterial Motility And Its Role In Biofilm Formation, Clayton J. Culp, Arezoo M. Ardekani, Adib Ahmadzadegan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bacterial biofilms are known to cause millions of dollars in damage in the medical industry per year via infection of central venous catheters, urinary catheters, and mechanical heart valves. Unfortunately, there are some characteristics of biofilm formation that are yet to be fully understood. Recently much work has been done to investigate the motility characteristics of bacteria with hopes of better understanding the phenomena of biofilm formation. Still, one of the least understood stages is bacterial attachment or adhesion, a process designed to anchor bacteria in an advantageous environment. Providing a better understanding of bacterial motility near solid interfaces will …


Kinematic Difference Between A Biological Cell And An Artificial Vesicle In A Strong Dc Electric Field – A “Shell” Membrane Model Study, Hui Ye Aug 2017

Kinematic Difference Between A Biological Cell And An Artificial Vesicle In A Strong Dc Electric Field – A “Shell” Membrane Model Study, Hui Ye

Biology: Faculty Publications and Other Works

Background

Cellular biomechanics can be manipulated by strong electric fields, manifested by the field-induced membrane deformation and migration (galvanotaxis), which significantly impacts normal cellular physiology. Artificial giant vesicles that mimic the phospholipid bilayer of the cell membrane have been used to investigate the membrane biomechanics subjected to electric fields. Under a strong direct current (DC) electric field, the vesicle membrane demonstrates various patterns of deformation, which depends on the conductivity ratio between the medium and the cytoplasm. The vesicle exhibits prolate elongation along the direction of the electric field if the cytoplasm is more conductive than the medium. Conversely, the …


A Numerical Study Of The Interaction Between One Dimensional Carbyne Chain And Single Stranded Dna, Zeina Salman Aug 2017

A Numerical Study Of The Interaction Between One Dimensional Carbyne Chain And Single Stranded Dna, Zeina Salman

Graduate Theses and Dissertations

resolution at the single nucleotide level when developing DNA sequencers. The purpose of this research was to numerically study the electrical properties associated with the interaction between 1D carbon chain, known as carbyne, and ssDNA. First, the electrical properties of the carbyne chain were calculated. Second, the electrical properties of the carbyne chain were calculated in the presence of different ssDNA bases. Analyzing the differences between the two cases led to determining the effects of these different bases on the electrical properties. The numerical simulation approach conducted in this research was based on the first-principle simulation. The first-principle simulation was …


Experiment-Based Quantitative Modeling For The Antibacterial Activity Of Silver Nanoparticles, Mohammad Aminul Haque Aug 2017

Experiment-Based Quantitative Modeling For The Antibacterial Activity Of Silver Nanoparticles, Mohammad Aminul Haque

Graduate Theses and Dissertations

Silver (Ag) has been well known for its antimicrobial activity for a long time. Recent research showed the potential of Ag nanoparticles as emerging antimicrobial agents. However, little quantitative analysis has been performed so far to decipher the mechanism of interaction between nanoparticles and bacteria. Here, a detailed analysis based on kinetic growth assay and colony forming unit assay has been carried out to study the antimicrobial effect of Ag nanoparticles against Escherichia coli (E. coli) bacteria. It was observed that the presence of Ag nanoparticles increased the lag time of bacterial growth while not affecting the maximum growth rate …


Biomedical Applications Of Mid-Infrared Spectroscopic Imaging And Multivariate Data Analysis: Contribution To The Understanding Of Diabetes Pathogenesis, Ebrahim Aboualizadeh Aug 2017

Biomedical Applications Of Mid-Infrared Spectroscopic Imaging And Multivariate Data Analysis: Contribution To The Understanding Of Diabetes Pathogenesis, Ebrahim Aboualizadeh

Theses and Dissertations

Diabetic retinopathy (DR) is a microvascular complication of diabetes and a leading cause of adult vision loss. Although a great deal of progress has been made in ophthalmological examinations and clinical approaches to detect the signs of retinopathy in patients with diabetes, there still remain outstanding questions regarding the molecular and biochemical changes involved. To discover the biochemical mechanisms underlying the development and progression of changes in the retina as a result of diabetes, a more comprehensive understanding of the bio-molecular processes, in individual retinal cells subjected to hyperglycemia, is required. Animal models provide a suitable resource for temporal detection …


The Effect Of Hemodynamic Force On The Maturation Of Blood Vessels During Embryogenesis, Rachel Lee Padget Aug 2017

The Effect Of Hemodynamic Force On The Maturation Of Blood Vessels During Embryogenesis, Rachel Lee Padget

MSU Graduate Theses

Throughout embryonic development, blood vessels are derived from endothelial cells by way of vasculogenesis. During angiogenesis, vessels remodel to form a hierarchy of large-diameter arteries that branch into small-diameter capillaries. In this maturation, vessels respond to unidentified signaling events to become surrounded with an outer layer of vascular smooth muscle cells (vSMCs). This results in arteries that have a thick vSMC layer, veins that have a thin vSMC layer, and capillaries that have a very thin or absent vSMC layer. What remains to be determined is the cause of the thicker layer of vSMCs around proximal arteries. Previous studies …


Elucidating Mechanisms Of Protein Aggregation In Alzheimer’S Disease Using Antibody-Based Strategies., Benjamin A. Colvin Jul 2017

Elucidating Mechanisms Of Protein Aggregation In Alzheimer’S Disease Using Antibody-Based Strategies., Benjamin A. Colvin

Dissertations

Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder. There are two characteristic histopathological hallmarks in the brain: senile plaques and neurofibrillary tangles, composed of insoluble aggregates of the amyloids Amyloid-β (Aβ) and tau protein, respectively. These diagnostic markers, though distinctive, are not apparent effectors of AD pathology. Evidence has mounted suggesting smaller soluble aggregates (oligomers) of Aβ or tau are the true drivers of disease progression. This dissertation presents several amyloid biophysics projects. Aggregate biophysical parameters such as weight, shape, and conformation were measured using a range of methodologies, including Multiangle Light Scattering, Dynamic Light Scattering, UV-Circular Dichroism, UV-Fluorescence, Scanning …


Modeling Of Dynamic Allostery In Proteins Enabled By Machine Learning, Mohsen Botlani-Esfahani Jul 2017

Modeling Of Dynamic Allostery In Proteins Enabled By Machine Learning, Mohsen Botlani-Esfahani

USF Tampa Graduate Theses and Dissertations

Regulation of protein activity is essential for normal cell functionality. Many proteins are regulated allosterically, that is, with spatial gaps between stimulation and active sites. Biological stimuli that regulate proteins allosterically include, for example, ions and small molecules, post-translational modifications, and intensive state-variables like temperature and pH. These effectors can not only switch activities on-and-off, but also fine-tune activities. Understanding the underpinnings of allostery, that is, how signals are propagated between distant sites, and how transmitted signals manifest themselves into regulation of protein activity, has been one of the central foci of biology for over 50 years. Today, the importance …


Perspective: The Physics, Diagnostics, And Applications Of Atmospheric Pressure Low Temperature Plasma Sources Used In Plasma Medicine, M. Laroussi Jul 2017

Perspective: The Physics, Diagnostics, And Applications Of Atmospheric Pressure Low Temperature Plasma Sources Used In Plasma Medicine, M. Laroussi

Electrical & Computer Engineering Faculty Publications

Low temperature plasmas have been used in various plasma processing applications for several decades. But it is only in the last thirty years or so that sources generating such plasmas at atmospheric pressure in reliable and stable ways have become more prevalent. First, in the late 1980s, the dielectric barrier discharge was used to generate relatively large volume diffuse plasmas at atmospheric pressure. Then, in the early 2000s, plasma jets that can launch cold plasma plumes in ambient air were developed. Extensive experimental and modeling work was carried out on both methods and much of the physics governing such sources …


Thermally-Assisted Acoustofluidic Separation For Bioanalytical Applications, Ata Dolatmoradi Jun 2017

Thermally-Assisted Acoustofluidic Separation For Bioanalytical Applications, Ata Dolatmoradi

FIU Electronic Theses and Dissertations

Changes in the biomechanical properties of cells accompanying the development of various pathological conditions have been increasingly reported as biomarkers for various diseases and as a predictor of disease progression stages. For instance, cancer cells have been found to be less stiff compared to their healthy counterparts due to the proteomic and lipidomic dysregulations conferred by the underlying pathology. The separation and selective recovery of cells or extracellular vesicles secreted from such cells that have undergone these changes have been suggested to be of diagnostic and prognostic value.

This dissertation first describes the implementation of a stiffness-based separation of phosphatidylcholine-based …


The Mechanistic Requirements Of Passive H+ Import Through The Na, K-Atpase, Kevin S. Stanley Jun 2017

The Mechanistic Requirements Of Passive H+ Import Through The Na, K-Atpase, Kevin S. Stanley

Theses and Dissertations

This work focuses on the elucidation of the mechanism of passive proton import through the Na,K-ATPase. This enzyme uses the energy in ATP hydrolysis to exchange three intracellular Na+ for two extracellular K+ to maintain ion gradients within the cell, and while in the absence of physiological external Na+ and K+, the phosphorylated externally open (E2P) conformation passively imports protons, generating an inward current (IH). Chapter one reports on the effects of intracellular cations and nucleotides to shift the Na,K-ATPase into the E2P conformation. We identified that a combination of either internal Na+ and ATP or K+ and Pi. In …


Capacitive Memory Alters Alternans And Spontaneous Activity In A Minimal Cardiomyocyte Model, Tien Comlekoglu, Seth H. Weinberg May 2017

Capacitive Memory Alters Alternans And Spontaneous Activity In A Minimal Cardiomyocyte Model, Tien Comlekoglu, Seth H. Weinberg

Biology and Medicine Through Mathematics Conference

No abstract provided.


Tissue Damage Quantification In Alzheimer's Disease Brain Via Magnetic Resonance Gradient Echo Plural Contrast Imaging (Gepci), Yue Zhao May 2017

Tissue Damage Quantification In Alzheimer's Disease Brain Via Magnetic Resonance Gradient Echo Plural Contrast Imaging (Gepci), Yue Zhao

Arts & Sciences Electronic Theses and Dissertations

Alzheimer’s disease (AD) affected approximately 48 million people worldwide in 2015. Its devastating consequences have stimulated an intense search for AD prevention and treatment. Clinically, AD is characterized by memory deficits and progressive cognitive impairment, leading to dementia. Over the past two to three decades, researchers have found that amyloidbeta (Aβ) plaques and neurofibrillary tau tangles occur during a long pre-symptomatic period (preclinical stage) before the onset of clinical symptoms. As a result, identification of the preclinical stage is essential for the initiation of prevention trials in asymptomatic individuals. Currently, Positron Emission Tomography (PET) imaging with injected 11C or 18F …


Disordered Proteins: Connecting Sequences To Emergent Properties, Tyler Scott Harmon May 2017

Disordered Proteins: Connecting Sequences To Emergent Properties, Tyler Scott Harmon

Arts & Sciences Electronic Theses and Dissertations

Many IDPs participate in coupled folding and binding reactions and form alpha helical structures in their bound complexes. Alanine, glycine, or proline scanning mutagenesis approaches are often used to dissect the contributions of intrinsic helicities to coupled folding and binding. These experiments can yield confounding results because the mutagenesis strategy changes the amino acid compositions of IDPs. Therefore, an important next step in mutagenesis-based approaches to mechanistic studies of coupled folding and binding is the design of sequences that satisfy three major constraints. These are (i) achieving a target intrinsic alpha helicity profile; (ii) fixing the positions of residues corresponding …


Structural, Biophysical, And Functional Studies Of Trem2 In Neurodegenerative Disease, Daniel L. Kober May 2017

Structural, Biophysical, And Functional Studies Of Trem2 In Neurodegenerative Disease, Daniel L. Kober

Arts & Sciences Electronic Theses and Dissertations

Alzheimer's disease (AD) and other neurodegenerative diseases present a large and growing challenge to global health. The immune system, particularly the innate immune system, is increasingly recognized as having a major role in these pathologies. The innate immune system is responsible to contain disease and promote healing. However, immune misregulation exacerbates disease. The innate immunomodulatory receptor Triggering receptor expressed on myeloid cells-2 (TREM2) is expressed on myeloid cells such as dendritic cells, macrophages, and in the brain, on microglia. TREM2 is a single-pass transmembrane receptor with an extracellular Ig domain that mediates ligand binding. This protein regulates inflammation in vitro …


Physical Principles Governing Colloidal Particle Deposition At Low Reynold’S Number: Applications To Microbial Biofilms, Sophia Wiedmann May 2017

Physical Principles Governing Colloidal Particle Deposition At Low Reynold’S Number: Applications To Microbial Biofilms, Sophia Wiedmann

Macalester Journal of Physics and Astronomy

Biofilms formed from the adhesion of microbes to a surface hold great relevance to public health and wastewater management. However, the physical principles underlying the attachment stage of biofilm formation, when individual microbes first come into contact with a substrate, are not well understood. Here I report on a model of colloidal particle attachment to a surface that incorporates the effects of diffusion, advection, gravity, and the hydrodynamic lift and drag forces experienced by polystyrene beads at low Reynold’s number. The simulation predicts attachment rates of 1.04x10^(-8)m/s, 0.73x10^(-8)m/s, and 1.29x10^(-8)m/s for beads of radius 0.25 µm, 0.55 µm, and 0.90 …