Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Autophagic Turnover Of Inactive 26s Proteasomes In Yeast Is Directed By The Ubiquitin Receptor Cue5 And The Hsp42 Chaperone, Richard S. Marshall, Fionn Mcloughlin, Richard D. Vierstra Aug 2016

Autophagic Turnover Of Inactive 26s Proteasomes In Yeast Is Directed By The Ubiquitin Receptor Cue5 And The Hsp42 Chaperone, Richard S. Marshall, Fionn Mcloughlin, Richard D. Vierstra

Biology Faculty Publications & Presentations

Highlights

  • The yeast 26S proteasome is degraded by Atg8-mediated autophagy
  • Nitrogen starvation and inactivation stimulate proteaphagy via distinct pathways
  • Proteasome inhibition is accompanied by extensive ubiquitylation of the complex
  • Proteaphagy engages the Cue5 autophagy receptor and the Hsp42 chaperone

Summary

The autophagic clearance of 26S proteasomes (proteaphagy) is an important homeostatic mechanism within the ubiquitin system that modulates proteolytic capacity and eliminates damaged particles. Here, we define two proteaphagy routes in yeast that respond to either nitrogen starvation or particle inactivation. Whereas the core autophagic machineries required for Atg8 lipidation and vesiculation are essential for both routes, the upstream Atg1 …


Targeting Tau Degradation By Small Molecule Inhibitors For Treatment Of Tauopathies, Mackenzie Martin Jun 2016

Targeting Tau Degradation By Small Molecule Inhibitors For Treatment Of Tauopathies, Mackenzie Martin

USF Tampa Graduate Theses and Dissertations

Tauopathies are neurodegenerative diseases that affect millions of people around the world. Tauopathies include more than 20 neurodegenerative diseases. Some of the most common tauopathies are Alzheimer’s disease (AD), frontotemporal dementia (FTD), chronic traumatic encephalopathy (CTE), Pick’s disease, corticobasal degeneration, progressive supranuclear palsy (PSP), agyrophillic grain disease, and amyotrophic lateral sclerosis (ALS). These diseases can cause significant memory loss, behavioral changes, motor deficits and speech impairments. Tauopathies stem from accumulation of the microtubule associated protein tau (MAPT). Tau stabilizes microtubules and helps with axonal transport. In a disease state tau becomes hyperphosphorylated and truncated leading to its aggregation. More recently …


Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


Decorin As A Multivalent Therapeutic Agent Against Cancer., Thomas Neill, Liliana Schaefer, Renato V. Iozzo Feb 2016

Decorin As A Multivalent Therapeutic Agent Against Cancer., Thomas Neill, Liliana Schaefer, Renato V. Iozzo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Decorin is a prototypical small leucine-rich proteoglycan that epitomizes the multifunctional nature of this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target-rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell …