Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Evaluating Bioenergetics And Mitochondrial Dynamics In Patient Fibroblasts With Pathogenic Mitochondrial Dna Mutations Causing Leigh Syndrome, Ajibola Bakare Jul 2021

Evaluating Bioenergetics And Mitochondrial Dynamics In Patient Fibroblasts With Pathogenic Mitochondrial Dna Mutations Causing Leigh Syndrome, Ajibola Bakare

Graduate Theses and Dissertations

Leigh syndrome (LS) is a rare fatal mitochondrial disorder of infants caused by pathogenic mutations in the nuclear (nDNA) or mitochondrial DNA (mtDNA) leading to mitochondrial dysfunction. The extent to which pathogenic mtDNA variants regulate disease severity in LS is not well understood. The heterogeneous nature of this disorder, based in part by complex mitochondrial genetics, and the nuclear and mitochondrial cross-talk has made it particularly challenging to investigate and develop therapies for treating LS . While the prognosis is poor, several studies are underway to understand the pathophysiology of LS. This dissertation provides a comprehensive structural and functional analysis …


Huntingtin Aggregation At Interfaces Associated With Membranes And Organelles, Adewale Vincent Adegbuyiro Jan 2021

Huntingtin Aggregation At Interfaces Associated With Membranes And Organelles, Adewale Vincent Adegbuyiro

Graduate Theses, Dissertations, and Problem Reports

Huntington’s Disease (HD) is a genetic neurodegenerative disease caused by the expansion of polyglutamine (polyQ) domain within the first exon (exon1) of the huntingtin (htt) protein. Due to this mutation within the polyQ domain, htt aggregates into various toxic species such as oligomers, fibrils, and other amorphous aggregates. While the aggregation of htt strongly correlates with polyQ length, other factors, e.g. interaction with membranes or organelles and posttranslational modifications (PTMs), modulate aggregation. The first 17 N-terminal amino acids (Nt17) that precede the polyQ in htt-exon1 enhances aggregation and facilitated binding of htt to membranous organelles, promoting morphological changes and disfunction. …


Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck Jan 2021

Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck

Wayne State University Dissertations

Mitochondria are complex organelles that generate most of the energy required to sustain life and function in metabolic and signaling pathways required to maintain cellular homeostasis. MNRR1 (mitochondrial nuclear retrograde regulator 1 or CHCHD2) is a small, bi-organellar twin CX9C protein that is emerging as an important regulator of mitochondrial function, apoptosis, and cellular stress by participating in mitochondrial-nuclear crosstalk. Our lab has previously shown that in the mitochondria, MNRR1 regulates complex IV (Cytochrome c oxidase or COX) and is able to finetune the oxidase function through phosphorylation status. We have also shown that during stress, mitochondrial MNRR1 levels deplete, …