Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

University of Kentucky

Theses and Dissertations--Chemistry

Diffusion

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Multi-Scale Computational Studies Of Calcium (Ca2+) Signaling, Bin Sun Jan 2019

Multi-Scale Computational Studies Of Calcium (Ca2+) Signaling, Bin Sun

Theses and Dissertations--Chemistry

Ca2+ is an important messenger that affects almost all cellular processes. Ca2+ signaling involves events that happen at various time-scales such as Ca2+ diffusion, trans-membrane Ca2+ transport and Ca2+-mediated protein-protein interactions. In this work, we utilized multi-scale computational methods to quantitatively characterize Ca2+ diffusion efficiency, Ca2+ binding thermodynamics and molecular bases of Ca2+-dependent protein-protein interaction. Specifically, we studied 1) the electrokinetic transport of Ca2+ in confined sub-µm geometry with complicated surfacial properties. We characterized the effective diffusion constant of Ca2+ in a cell-like environment, which helps to understand …


Nanoparticle Behavior In Biological Gels And Biofluids: The Impact Of Interactions With Charged Biogels And The Formation Of Protein Coronas On Nanoparticles, Xiaolu Zhang Jan 2015

Nanoparticle Behavior In Biological Gels And Biofluids: The Impact Of Interactions With Charged Biogels And The Formation Of Protein Coronas On Nanoparticles, Xiaolu Zhang

Theses and Dissertations--Chemistry

With the rapid growth of nanotechnology, situations where nanomaterials will interact with biological systems will unquestionably grow. Therefore, it is increasingly understood that interactions between nanomaterials and biological environments will play an essential role in nanomedicine. Biological polymer networks, including mucus and the extracellular matrix, serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate transport processes through finely tuned particle-network interactions. In chapters 3 and 4, we investigate the role of electrostatics on the basic mechanisms governing the diffusion of charged molecules inside model polymer networks by …