Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Physiologically-Based Pharmacokinetic Modeling Of Acetaminophen Metabolism And Toxicity, David M. Ng, Ali Navid Aug 2012

Physiologically-Based Pharmacokinetic Modeling Of Acetaminophen Metabolism And Toxicity, David M. Ng, Ali Navid

STAR Program Research Presentations

Acetaminophen is a common analgesic and antipyretic. Metabolism of acetaminophen and acetaminophen-induced liver necrosis are predicted using physiologically-based pharmacokinetic (PBPK) modeling. Pharmacokinetic means the model determines where the drug is distributed in the body over time. Physiologically-based means the anatomy and physiology of the human body is reflected in the structure and functioning of the model. Acetaminophen is usually safe and effective when taken as recommended, but consumption at higher levels may lead to liver damage. Additionally, other factors such as alcoholic liver disease, smoking, and malnutrition affect the maximum safe dose of acetaminophen.


Analyzing Environmental Microbes For Genomic Regions Promoting Ionic Liquid Tolerance In E. Coli, Ann Nguyen, Alison Richins, Thomas Rüegg, Steven Singer, Michael Thelen Aug 2012

Analyzing Environmental Microbes For Genomic Regions Promoting Ionic Liquid Tolerance In E. Coli, Ann Nguyen, Alison Richins, Thomas Rüegg, Steven Singer, Michael Thelen

STAR Program Research Presentations

Ionic liquids (ILs) are promising as solvents to increase the efficiency of biofuel production; however, ILs are toxic to microbes used in the fermentation of liquid fuels. To engineer IL resistant biofuel hosts, environmental bacteria were screened for tolerance, and these were used to create gene libraries to test in E. coli. Future characterization of these libraries using molecular techniques will be used to identify genes that contribute IL-tolerance to transformed microbes.