Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

PDF

Faculty Publications

Proteins

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

A Highly Elastic And Fatigue-Resistant Natural Protein-Reinforced Hydrogel Electrolyte For Reversible-Compressible Quasi-Solid-State Supercapacitors, Jingya Nan, Gaitong Zhang, Tianyu Zhu, Zhongkai Wang, Lijun Wang, Hongsheng Wang, Fuxiang Chu, Chunpeng Wang, Chuanbing Tang Jun 2020

A Highly Elastic And Fatigue-Resistant Natural Protein-Reinforced Hydrogel Electrolyte For Reversible-Compressible Quasi-Solid-State Supercapacitors, Jingya Nan, Gaitong Zhang, Tianyu Zhu, Zhongkai Wang, Lijun Wang, Hongsheng Wang, Fuxiang Chu, Chunpeng Wang, Chuanbing Tang

Faculty Publications

Compressible solid-state supercapacitors are emerging as promising power sources for next-generation flexible electronics with enhanced safety and mechanical integrity. Highly elastic and compressible solid electrolytes are in great demand to achieve reversible compressibility and excellent capacitive stability of these supercapacitor devices. Here, a lithium ion-conducting hydrogel electrolyte by integrating natural protein nanoparticles into polyacrylamide network is reported. Due to the synergistic effect of natural protein nanoparticles and polyacrylamide chains, the obtained hydrogel shows remarkable elasticity, high compressibility, and fatigue resistance properties. More significantly, the supercapacitor device based on this hydrogel electrolyte exhibits reversible compressibility under multiple cyclic compressions, working well …


A New N-Terminal Recognition Domain In Caveolin-1 Interacts With Sterol Carrier Protein-2 (Scp-2), Rebecca D. Parr, Gregory G. Martin, Heather A. Hostetler, Megan E. Schroeder, Kiran D. Mir, Ann B. Kier, Judith M. Ball, Friedhelm Schroeder Jan 2007

A New N-Terminal Recognition Domain In Caveolin-1 Interacts With Sterol Carrier Protein-2 (Scp-2), Rebecca D. Parr, Gregory G. Martin, Heather A. Hostetler, Megan E. Schroeder, Kiran D. Mir, Ann B. Kier, Judith M. Ball, Friedhelm Schroeder

Faculty Publications

Although plasma membrane domains, such as caveolae, provide an organizing principle for signaling pathways and cholesterol homeostasis in the cell, relatively little is known regarding specific mechanisms, whereby intracellular lipid-binding proteins are targeted to caveolae. Therefore, the interaction between caveolin-1 and sterol carrier protein-2 (SCP-2), a protein that binds and transfers both cholesterol and signaling lipids (e.g., phosphatidylinositides and sphingolipids), was examined by yeast two-hybrid, in vitro binding and fluorescence resonance energy transfer (FRET) analyses. Results of the in vivo and in vitro assays identified for the first time the N-terminal amino acids (aa) 1−32 amphipathic α helix of SCP-2 …