Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry

PDF

Dartmouth Scholarship

Proteins

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Stoichiometries And Affinities Of Interacting Proteins From Concentration Series Of Solution Scattering Data: Decomposition By Least Squares And Quadratic Optimization, Himanshu Chandola, Tim E. Williamson, Bruce A. Craig, Alan M. Friedman, Chris Bailey-Kellogg Mar 2014

Stoichiometries And Affinities Of Interacting Proteins From Concentration Series Of Solution Scattering Data: Decomposition By Least Squares And Quadratic Optimization, Himanshu Chandola, Tim E. Williamson, Bruce A. Craig, Alan M. Friedman, Chris Bailey-Kellogg

Dartmouth Scholarship

In studying interacting proteins, complementary insights are provided by analyzing both the association model (the stoichiometry and affinity constants of the intermediate and final complexes) and the quaternary structure of the resulting complexes. Many current methods for analyzing protein interactions either give a binary answer to the question of association and no information about quaternary structure or at best provide only part of the complete picture. Presented here is a method to extract both types of information from X-ray or neutron scattering data for a series of equilibrium mixtures containing the initial components at different concentrations. The method determines the …


Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg Nov 2011

Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg

Dartmouth Scholarship

Fold recognition techniques take advantage of the limited number of overall structural organizations, and have become increasingly effective at identifying the fold of a given target sequence. However, in the absence of sufficient sequence identity, it remains difficult for fold recognition methods to always select the correct model. While a native-like model is often among a pool of highly ranked models, it is not necessarily the highest-ranked one, and the model rankings depend sensitively on the scoring function used. Structure elucidation methods can then be employed to decide among the models based on relatively rapid biochemical/biophysical experiments.