Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Analytical Chemistry

Graduate Theses, Dissertations, and Problem Reports

Amyloid formation

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Investigation Of Early Complex Formation Of Huntingtin Protein With And Without Lipids, Alyssa R. Stonebraker Jan 2023

Investigation Of Early Complex Formation Of Huntingtin Protein With And Without Lipids, Alyssa R. Stonebraker

Graduate Theses, Dissertations, and Problem Reports

Huntington’s disease (HD) is a fatal neurodegenerative disease caused by the expansion of the polyglutamine (polyQ) domain of the huntingtin protein (htt). The expansion of the polyQ domain beyond a threshold of approximately 35 repeats triggers complex toxic aggregation mechanisms and results in altered interactions between htt and lipid membranes. Many factors modulate these processes. One such modulator includes sequences flanking the polyQ domain, most notably the first 17 amino acids at the N-terminus of the protein (Nt17), and environmental factors including the presence of membranous structures. Nt17 has the propensity to form an amphipathic a-helix in the presence of …


The Effects Of Membrane Physicochemical Properties On Huntingtin Membrane Association And Downstream Aggregation, Maryssa Beasley Jan 2020

The Effects Of Membrane Physicochemical Properties On Huntingtin Membrane Association And Downstream Aggregation, Maryssa Beasley

Graduate Theses, Dissertations, and Problem Reports

Huntington’s Disease (HD) is a fatal neurodegenerative disorder caused by an expanded glutamine repeat region (polyQ) within the huntingtin protein (htt). As a result of the expanded polyQ domain, htt associates into a variety of toxic aggregate species. The polyQ domain of htt is flanked at the N-terminal end by 17 amino acids (Nt17) that adopt an amphipathic α-helical structure in the presence of binding partners such as lipid membranes. In addition to comprising a lipid binding domain, the Nt17 amphipathic α -helix has been directly implicated in htt aggregation initiation via self-association with other Nt17 α -helices. Due to …