Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Application Of Flow Cytometry As Novel Technology In Studying Lipid Oxidation In Oil-In-Water Emulsions, Peilong Li Oct 2019

Application Of Flow Cytometry As Novel Technology In Studying Lipid Oxidation In Oil-In-Water Emulsions, Peilong Li

Masters Theses

The body of literature on the impact of emulsion particle size on oxidation rates is unclear. This could be because emulsions are typically polydisperse and the oxidation rate of individual droplets is impossible to discern. Flow cytometry is a technique for studying individual cells and their subpopulations using fluorescence technologies. It is possible that individual emulsion droplets could also be characterized by flow cytometry as a novel approach for studying lipid oxidation. Typical emulsion droplets are too small to be visualized by flow cytometer, so emulsions were prepared to have droplets > 2 μm; weighting agent and xanthan gum were added …


Mass Transfer Effects Of Particle Size On Brewing Espresso, Sichen Zhong, Lauren Elizabeth Stork Jan 2017

Mass Transfer Effects Of Particle Size On Brewing Espresso, Sichen Zhong, Lauren Elizabeth Stork

Rose-Hulman Undergraduate Research Publications

The extraction process for coffee is complicated due to the nature of the coffee. In this paper, we studied the particle size distribution for coffee grinds and further analyzed that with the help of an inverted microscope and a scanning electron microscope. We drew a conclusion that the coffee grinds can be divided into two parts: cell fragments with smaller particles size and intact coffee cells with larger particles. The intact coffee cell was found to be a porous media. Therefore, we tried to brew the espresso with both normal grind size coffee and sieved coffee to study the extraction …


Validation Of A Finite-Element Stored Grain Ecosystem Model, Michael D. Montross, Dirk E. Maier, Kamyar Haghighi Sep 2002

Validation Of A Finite-Element Stored Grain Ecosystem Model, Michael D. Montross, Dirk E. Maier, Kamyar Haghighi

Biosystems and Agricultural Engineering Faculty Publications

An axisymmetric finite–element model was validated with respect to predicting the heat, mass, and momentum transfer that occurred in upright corrugated–steel storage bins due to conduction, diffusion, and natural convection using realistic boundary conditions. Hourly weather data that included hourly total solar radiation, wind speed, ambient temperature, and relative humidity were used to model the corn temperature and moisture content during storage with no aeration, and with ambient and chilled aeration. Periods of aeration were simulated assuming a uniform airflow rate through the grain mass. Sixteen bins with a capacity of 11.7 t each and instrumented with temperature cables were …


Development Of A Finite-Element Stored Grain Ecosystem Model, Michael D. Montross, Dirk E. Maier, Kamyar Haghighi Sep 2002

Development Of A Finite-Element Stored Grain Ecosystem Model, Michael D. Montross, Dirk E. Maier, Kamyar Haghighi

Biosystems and Agricultural Engineering Faculty Publications

An axisymmetric finite–element model was developed that predicts the heat, mass, and momentum transfer that occurred in upright corrugated steel storage structures due to conduction, diffusion, and natural convection using realistic boundary conditions. Weather data that included hourly total solar radiation, wind speed, ambient temperature, and relative humidity were used to model the temperature, moisture content, dry matter loss, and maize weevil development during storage with no aeration, and with ambient and chilled aeration. Periods of aeration were simulated assuming a uniform airflow rate through the grain mass. Heat and mass balances were used to calculate the temperature and absolute …


Fluidization And Its Applications To Food Processing, N. C. Shilton, K. Niranjan Jan 1993

Fluidization And Its Applications To Food Processing, N. C. Shilton, K. Niranjan

Food Structure

This paper is a comprehensive review of the science behind fluidization of food materials, and its applications in food processing. Fluidization is a process by which a bed of particulate materials exhibts fluid -like behaviour as a result of fluid flowing through it. Fluidization can be carried out by liquids or gases and different forms of fluidization occur depending on the type of fluidizing medium and the properties of the particulate material , this can have an important effect on the type of processes that can be carried out using fluidization.

Typical food processing applications of fluidization include freezing and …