Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Nursing Females Are More Prone To Heat Stress: Demography Matters When Managing Flying-Foxes For Climate Change, Stephanie T. Snoyman, Jasmina Munich, Culum Brown Dec 2012

Nursing Females Are More Prone To Heat Stress: Demography Matters When Managing Flying-Foxes For Climate Change, Stephanie T. Snoyman, Jasmina Munich, Culum Brown

Ecological Impacts of Climate Change Collection

Determining the underlying mechanisms responsible for species-specific responses to climate change is important from a species management perspective. The grey-headed flying-fox, Pteropus poliocephalus, is listed as vulnerable but it also a significant pest species for orchardists and thereby presents an interesting management conundrum. Over the last century, the abundance of the grey-headed flying-fox, P. poliocephalus, in Australia has decreased due to a variety of threatening processes but has increased in abundance in urban areas. These flying-foxes are highly susceptible to extreme heat events which are predicted to increase in the future under climate change scenarios. Exceptionally hot days result in …


Century-Scale Responses Of Ecosystem Carbon Storage And Flux To Multiple Environmental Changes In The Southern United States, Hanqin Tian, Guangsheng Chen, Chi Zang, Mingliang Liu, Ge Sun, Arthur Chappelka, Wei Ren, Xiaofeng Xu, Chaoqun Lu, Shufen Pan, Hua Chen, Dafeng Hui, Steven Mcnulty, Graeme Lockaby, Eric Vance Jun 2012

Century-Scale Responses Of Ecosystem Carbon Storage And Flux To Multiple Environmental Changes In The Southern United States, Hanqin Tian, Guangsheng Chen, Chi Zang, Mingliang Liu, Ge Sun, Arthur Chappelka, Wei Ren, Xiaofeng Xu, Chaoqun Lu, Shufen Pan, Hua Chen, Dafeng Hui, Steven Mcnulty, Graeme Lockaby, Eric Vance

Chaoqun (Crystal) Lu

Terrestrial ecosystems in the southern United States (SUS) have experienced a complex set of changes in climate, atmospheric CO2 concentration, tropospheric ozone (O3), nitrogen (N) deposition, and land-use and land-cover change (LULCC) during the past century. Although each of these factors has received attention for its alterations on ecosystem carbon (C) dynamics, their combined effects and relative contributions are still not well understood. By using the Dynamic Land Ecosystem Model (DLEM) in combination with spatially explicit, long-term historical data series on multiple environmental factors, we examined the century-scale responses of ecosystem C storage and flux to multiple environmental changes in …


Anthropogenic Climate Change And Allergic Diseases, James Blando, Leonard Bielory, Viann Nguyen, Rafael Diaz, Hueiwang Anna Jeng Mar 2012

Anthropogenic Climate Change And Allergic Diseases, James Blando, Leonard Bielory, Viann Nguyen, Rafael Diaz, Hueiwang Anna Jeng

Community & Environmental Health Faculty Publications

Climate change is expected to have an impact on various aspects of health, including mucosal areas involved in allergic inflammatory disorders that include asthma, allergic rhinitis, allergic conjunctivitis and anaphylaxis. The evidence that links climate change to the exacerbation and the development of allergic disease is increasing and appears to be linked to changes in pollen seasons (duration, onset and intensity) and changes in allergen content of plants and their pollen as it relates to increased sensitization, allergenicity and exacerbations of allergic airway disease. This has significant implications for air quality and for the global food supply.


An Introduction To Ecology Of Infectious Diseases - Oysters And Estuaries, Eileen E. Hofmann, Susan E. Ford Jan 2012

An Introduction To Ecology Of Infectious Diseases - Oysters And Estuaries, Eileen E. Hofmann, Susan E. Ford

OES Faculty Publications

Infectious diseases are recognized as an important factor regulating marine ecosystems (Harvell et al., 1999, 2002, 2004; Porter et al., 2001; McCallum et al., 2004; Ward and Lafferty, 2004; Stewart et al., 2008; Bienfang et al., 2011). Many of the organisms affected by marine diseases have important ecological roles in estuarine and coastal environments and some are also commercially important. Outbreaks of infectious diseases in these environments, referred to as epizootics, can produce significant population declines and extinctions, both of which threaten biodiversity, food web interactions, and ecosystem productivity (Harvell et al., 2002, 2004).