Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Nanoclays‑Containing Bio‑Based Packaging Materials: Properties, Applications, Safety, And Regulatory Issues, Kalpani Y. Perera, Maille Hopkins, Amit K. Jaiswal Dr, Swarna Jaiswal Feb 2023

Nanoclays‑Containing Bio‑Based Packaging Materials: Properties, Applications, Safety, And Regulatory Issues, Kalpani Y. Perera, Maille Hopkins, Amit K. Jaiswal Dr, Swarna Jaiswal

Articles

Food packaging is an important concept for consumer satisfaction and the increased shelf life of food products. The introduction of novel food packaging materials has become an emerging trend in recent years, which could be mainly due to environmental pollution caused by plastic packaging and to reduce food waste. Recently, numerous studies have been carried out on nanoclays or nanolayered silicate to be used in packaging material development as reinforcing filler composites. Different types of nanoclays have been used as food packaging materials, while montmorillonite (MMT), halloysite, bentonite (BT), Cloisite, and organically modified nanoclays have become of great interest. The …


An Antimicrobial Polydopamine Surface Coating To Reduce Biofouling On Telemetry Tags Used In Marine Conservation Practices, Ariana Smies Jan 2022

An Antimicrobial Polydopamine Surface Coating To Reduce Biofouling On Telemetry Tags Used In Marine Conservation Practices, Ariana Smies

Dissertations, Master's Theses and Master's Reports

Satellite telemetry tags are used to track the migration patterns of large cetaceans. These tags penetrate the dermis and remain embedded in the underlying blubber tissue. As the dermis of cetaceans is host to a diverse microbiome, and it is impossible to clean the skin before implanting the devices, the potential for infection is increased when the tags penetrate through the skin. H2O2 is a potential antimicrobial agent that, in addition to showing broad-spectrum efficacy against gram-negative and gram-positive bacteria, can promote wound healing outcomes by promoting proliferative factors and peptides that protect against oxidative stress. However, …


Experiment-Based Quantitative Modeling For The Antibacterial Activity Of Silver Nanoparticles, Mohammad Aminul Haque Aug 2017

Experiment-Based Quantitative Modeling For The Antibacterial Activity Of Silver Nanoparticles, Mohammad Aminul Haque

Graduate Theses and Dissertations

Silver (Ag) has been well known for its antimicrobial activity for a long time. Recent research showed the potential of Ag nanoparticles as emerging antimicrobial agents. However, little quantitative analysis has been performed so far to decipher the mechanism of interaction between nanoparticles and bacteria. Here, a detailed analysis based on kinetic growth assay and colony forming unit assay has been carried out to study the antimicrobial effect of Ag nanoparticles against Escherichia coli (E. coli) bacteria. It was observed that the presence of Ag nanoparticles increased the lag time of bacterial growth while not affecting the maximum growth rate …


Synthesis And Applications Of Non-Migratory Metal Chelating Active Packaging, Maxine J. Roman Jul 2016

Synthesis And Applications Of Non-Migratory Metal Chelating Active Packaging, Maxine J. Roman

Doctoral Dissertations

Many packaged foods use synthetic chelators (e.g. ethylenediaminetetraacetic acid, EDTA) to inhibit metal promoted oxidation and/or microbial growth that may cause food spoilage. Consumer demand for foods without synthetic additives has prompted growing interest in alternative preservation methods. Our research group has previously developed non-migratory metal chelating active packaging materials by surface immobilization of polymeric chelators and demonstrated their ability to inhibit lipid oxidation in model food emulsions. The work presented in this dissertation investigates the synthesis, performance stability, and practical application of metal chelating surface modifications to optimize design of non-migratory metal chelating active packaging materials. Metal chelating active …


Concomitant Uptake Of Antimicrobials And Salmonella In Soil And Into Lettuce Following Wastewater Irrigation, J. Brett Sallach, Yuping Zhang, Laurie Hodges, Daniel D. Snow, Xu Li, Shannon L. Bartelt-Hunt Feb 2015

Concomitant Uptake Of Antimicrobials And Salmonella In Soil And Into Lettuce Following Wastewater Irrigation, J. Brett Sallach, Yuping Zhang, Laurie Hodges, Daniel D. Snow, Xu Li, Shannon L. Bartelt-Hunt

Department of Civil and Environmental Engineering: Faculty Publications

The use of wastewater for irrigation may introduce antimicrobials and human pathogens into the food supply through vegetative uptake. The objective of this study was to investigate the uptake of three antimicrobials and Salmonella in two lettuce cultivars. After repeated subirrigation with synthetic wastewater, lettuce leaves and soil were collected at three sequential harvests. The internalization frequency of Salmonella in lettuce was low. A soil horizon-influenced Salmonella concentration gradient was determined with concentrations in bottom soil 2 log CFU/g higher than in top soil. Lincomycin and sulfamethoxazole were recovered from lettuce leaves at concentrations as high as 822 ng/g and …


Fate Of Antimicrobials And Antimicrobial Resistance Genes In Simulated Swine Manure Storage, Stacey R. Joy, Xu Li, Daniel D. Snow, John Gilley, Bryan L. Woodbury, Shannon L. Bartelt-Hunt Jan 2014

Fate Of Antimicrobials And Antimicrobial Resistance Genes In Simulated Swine Manure Storage, Stacey R. Joy, Xu Li, Daniel D. Snow, John Gilley, Bryan L. Woodbury, Shannon L. Bartelt-Hunt

School of Natural Resources: Faculty Publications

The behavior of three antibiotics (bacitracin, chlortetracycline, and tylosin) and two classes of antibiotic resistance genes (ARGs), tet and erm, were monitored in swine manure slurry under anaerobic conditions. First-order decay rates were determined for each antibiotic with half-lives ranging from1 day (chlortetracycline) to 10 days (tylosin). ARGs were monitored in the swine manure slurry, and losses of approximately 1 to 3 orders of magnitude in relative abundance were observed during the 40 day storage period. First-order degradation profiles were observed for chlortetracycline and its corresponding resistance genes, tet(X) and tet(Q). Tylosin was degraded to approximately 10% …