Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Development Of Molecular Diagnostic Tools For Mycobacterium Species, Hillary Bengtson Jan 2017

Development Of Molecular Diagnostic Tools For Mycobacterium Species, Hillary Bengtson

Electronic Theses and Dissertations

This dissertation focuses on the development of diagnostic tools for mycobacteria using hybridization based technologies including binary deoxyribozyme (BiDz) sensors and microarrays. The genus Mycobacterium, is a diverse group of bacteria containing 150+ species including M. tuberculosis (M.tb) and non-tuberculous mycobacteria (NTM) which exhibit a range of pathogenicity, drug susceptibility and growth characteristics. M. tuberculosis (M.tb) is the causative agent of tuberculosis (TB) and the leading cause of infectious disease related deaths worldwide. The control of TB is limited by the lack of sensitive and specific diagnostic tools available at the point of care (POC). The studies presented here illustrate …


Discovery And Characterization Of Antimalarials With Novel Mechanisms Of Action, Bracken Roberts Jan 2017

Discovery And Characterization Of Antimalarials With Novel Mechanisms Of Action, Bracken Roberts

Electronic Theses and Dissertations

Malaria kills over 500,000 people each year and over a third of the global population is at risk of infection. Though the human race has been fighting the malaria war for over 4,000 years and we have made great strides in eliminating malaria from many countries, we are treading on the edge of what could be another malaria epidemic primarily due to widespread drug resistance. There are documented cases of resistance for every known antimalarial in use today, including Artemisinins. It is critical that we open a new window of discovery in development of next generation antimalarials that circumvent current …


Alpha-Synuclein: Insight Into The Hallmark Of Parkinson's Disease As A Target For Quantitative Molecular Diagnostics And Therapeutics, Baggio A. Evangelista Jan 2017

Alpha-Synuclein: Insight Into The Hallmark Of Parkinson's Disease As A Target For Quantitative Molecular Diagnostics And Therapeutics, Baggio A. Evangelista

Honors Undergraduate Theses

Parkinson’s disease (PD) is the second-most common neurodegenerative disease after Alzheimer’s disease. With 500,000 individuals currently living with Parkinson’s and nearly 60,000 new cases diagnosed each year, this disease causes significant financial burden on the healthcare system - amassing to annual expenditures totaling 200 billion dollars; predicted to increase through 2050. The disease phenotype is characterized by a combination of a resting tremor, bradykinesia, muscular rigidity, and depression due to dopaminergic neuronal death in the midbrain. The cause of the neurotoxicity has been largely discussed, with strong evidence suggesting that the protein, alpha-Synuclein, is a key factor. Under native conditions, …


Characterizing The Function Of The N-Terminal Domain Of Omi/Htra2, Christine Nguyen Jan 2017

Characterizing The Function Of The N-Terminal Domain Of Omi/Htra2, Christine Nguyen

Honors Undergraduate Theses

The yeast two-hybrid system was used to isolate and characterize protein interactors of the N-terminal domain of the serine protease Omi/HtrA2 (high temperature requirement protein A2) encompassing amino acids 31-133. This large domain of Omi/HtrA2 is usually cleaved and removed through autoproteolysis to produce the mature form of the protein. Whether the N-terminal domain has any function after its removal is unknown. Omi/HtrA2 is involved in a variety of diseases including cancers, neurodegenerative disorders, and metabolic disorders, but thus far, it is assumed that its normal function is the degradation of specific substrates. To characterize any potential function of Omi/HtrA2’s …


Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera Jan 2017

Micro-Spectroscopy Of Bio-Assemblies At The Single Cell Level, Jeslin Kera

Honors Undergraduate Theses

In this thesis, we investigate biological molecules on a micron scale in the ultraviolet spectral region through the non-destructive confocal absorption microscopy. The setup involves a combination of confocal microscope with a UV light excitation beam to measure the optical absorption spectra with spatial resolution of 1.4 μm in the lateral and 3.6 μm in the axial direction. Confocal absorption microscopy has the benefits of requiring no labels and only low light intensity for excitation while providing a strong signal from the contrast generated by the attenuation of propagating light due to absorption. This enables spatially resolved measurements of single …


Using Low-Coherence Interferometry To Monitor Cell Invasion In An In-Vitro Model System, Behnaz Davoudi Nasab Jan 2017

Using Low-Coherence Interferometry To Monitor Cell Invasion In An In-Vitro Model System, Behnaz Davoudi Nasab

Honors Undergraduate Theses

In an optically random system, such as naturally occurring and man-made media, light undergoes pronounced multiple scattering. This phenomenon has shown a remarkable potential in characterizing complex materials. In this regime, scattering occurs from each individual center of the scattering and independent scattering events lead to multiple light scattering. This phenomenon is often described as a random walk of photons and can be modeled in terms of a diffusion equation based on the radiative transfer theory. In this thesis, we used optical path-length spectroscopy (OPS), which is an experimental method to obtain the path-length probability density of the propagating light …


Characterization Of Novel Borrelia Burgdorferi Transcripts Expressed During Tick And Mammalian Infection, Philip Adams Jan 2017

Characterization Of Novel Borrelia Burgdorferi Transcripts Expressed During Tick And Mammalian Infection, Philip Adams

Electronic Theses and Dissertations

The purpose of this dissertation is to characterize the transcriptome of Borrelia (Borreliella) burgdorferi to discover novel transcripts, important for pathogenesis. As a spirochete and the etiological agent of Lyme disease, the foremost vector-borne bacterial infection in the world, B. burgdorferi fulfills a distinctive niche among bacterial pathogens. Persisting in the disparate environments of a tick vector and mammalian reservoirs, it is absolutely dependent on its hosts for transmission and nutrient acquisition. B. burgdorferi harbors a complex fragmented genome which is largely linear, unlike that of most prokaryotes, lacks an array of classically described metabolic genes, and contains an unusually …