Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Thermodynamic Analysis Of Phenylpropanoid Pathway In Arabidopsis Thanliana, Patrick J. Ioerger, Rohit Jaini, John A. Morgan Aug 2015

Thermodynamic Analysis Of Phenylpropanoid Pathway In Arabidopsis Thanliana, Patrick J. Ioerger, Rohit Jaini, John A. Morgan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Biofuels represent a renewable alternative to traditional fossil fuels. As dependence on fossil fuels rise so does the importance of improving the production of alternative fuels. Lignin poses one obstacle in the development of such alternative fuels. Its presence strengthens cell walls and hinders degradation of polysaccharides into monosaccharides, increasing cost and time while decreasing efficiency of the process. Lignin is composed of three monolignols, each of which is produced through the Phenylpropanoid pathway; a series of chemical reactions. This work aims to determine which reactions in the pathway are least thermodynamically favorable and thus most limiting. From metabolic mapping …


Visualization And Analysis Of Sensory Data, Luke Neumann, Sung Yeon Choi, Brian Olsen, Sungahn Ko, David Ebert Dr. Aug 2015

Visualization And Analysis Of Sensory Data, Luke Neumann, Sung Yeon Choi, Brian Olsen, Sungahn Ko, David Ebert Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Recently, California has suffered a severe drought, making water a scarce resource to its population. Many viticulturists are based in this area who rely on heavy irrigation to produce a better grape and a better wine. Not just in California, but throughout the nation, irrigation must be applied intelligently for efficient use of water and funding. By taking measurements of physical characteristics of a vineyard over time, one may be able to visualize trends in the data which lend itself to describing preferred growing methods. Wireless sensors can be used to take measurements including moisture, temperature, sunlight, and more. Sensors …


Visualization Of The Growth And Production Of Grapes Through Analysis Of Sensory Data, Sung Yeon Choi, Luke Neumann, Brian Olsen, Sungahn Ko, David Ebert Ph.D Aug 2015

Visualization Of The Growth And Production Of Grapes Through Analysis Of Sensory Data, Sung Yeon Choi, Luke Neumann, Brian Olsen, Sungahn Ko, David Ebert Ph.D

The Summer Undergraduate Research Fellowship (SURF) Symposium

Grapes used in the wine industry have been one of the highest value crops in the United States. However, with unpredictable weather changes and recent drought in the Western United States, vineyard owners and grape growers have faced difficulties on producing good quality grapes suited for wine making. Therefore, a technology that would keep record of environmental data and incorporate the data to support agricultural decisions will help the growers to produce quality grapes even in extreme conditions. As such, this research focuses on developing an interactive system that uses sensory data and visual analytics to facilitate vineyard management and …


Long-Term Tillage System Impacts On Soil Erodibility, Julianne R. Chechanover, Dennis C. Flanagan Aug 2015

Long-Term Tillage System Impacts On Soil Erodibility, Julianne R. Chechanover, Dennis C. Flanagan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Conservation tillage practices, such as no-till agriculture, have the potential of reducing the erodibility of a soil compared to conventional agricultural practices. This research sought to determine whether long-term agricultural practices affect the baseline erodibility properties of a soil. Two soils from Throckmorton-Purdue Agricultural Center in Tippecanoe County, Indiana were used during this experiment. One soil was treated with a long-term conventional tillage (fall chisel, spring disk) system and the other soil was treated with a long-term no-till system. The soils’ interrill erodibility, and rill erodibility and critical hydraulic shear stress were measured under a rainfall simulator using soil boxes …


Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner Aug 2015

Optical Emission Spectroscopy Diagnostics Of Cold Plasmas For Food Sterilization, Abhijit Jassem, Michael Lauria, Russell Brayfield Ii, Kevin M. Keener, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

There is a growing need for economical, effective, and safe methods of sterilizing fresh produce. The most common method is a chlorine wash, which is expensive and may introduce carcinogens. High voltage cold atmospheric pressure plasmas are a promising solution that has demonstrated a germicidal effect; however, the responsible chemical mechanisms and reaction pathways are not fully understood. To elucidate this chemistry, we used optical emission spectroscopy to measure the species produced in the plasma generated by a 60 Hz pulsed dielectric barrier discharge in a plastic box containing various fill gases (He, N2, CO2, dry …


Development Of A Novel Enzymatic Pre-Treatment For Lignocellulosic Biomass, Melissa Robins, Jenna Rickus Aug 2015

Development Of A Novel Enzymatic Pre-Treatment For Lignocellulosic Biomass, Melissa Robins, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Biofuels, fuels derived directly from living matter, present a renewable and environmentally friendly alternative to petroleum based fuels. Bioethanol produced from low input energy crops or agricultural waste is a promising fuel source because it does not interfere with the human food supply chain and the ethanol produced can be blended with gasoline. These potential sources of bioethanol are not yet commercially viable due to a polymer called lignin present in the plant’s cell wall which impedes the conversion of cellulose to glucose and the eventual fermentation of glucose to ethanol. Developing new methods for the pretreatment of lignocellulosic biomass …


Processing Methods And Storage Conditions On Chocolate And Coffee Powder Flow Properties, Sunland L. Gong, Andrea Della Bella, Teresa M. Carvajal Aug 2015

Processing Methods And Storage Conditions On Chocolate And Coffee Powder Flow Properties, Sunland L. Gong, Andrea Della Bella, Teresa M. Carvajal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Powders are widely used in a countless number of industries, and are crucial to the quality control of products in areas such as pharmaceuticals and food. Particle physicochemical properties (morphology, solid state – crystalline, amorphous or both) are important factors for powder flow, which in turn can have significant impact on the stability, performance, and presentation of powders. Different processing methods as well as storage conditions such as relative humidity (RH) can drastically affect powder flow. Due to the widespread use of chocolate and coffee powder around the world, and their importance to the food industry, this work investigates two …


Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve Aug 2015

Viewing The Extracellular Matrix: An Imaging Method For Tissue Engineering, Michael Drakopoulos, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

The field of regenerative medicine seeks to create replacement tissues and organs, both to repair deficiencies in biological function and to treat structural damage caused by injury. Scaffoldings mimicking extracellular matrix (ECM), the structure to which cells attach to form tissues, have been developed from synthetic polymers and also been prepared by decellularizing adult tissue. However, the structure of ECM undergoes significant remodeling during natural tissue repair, suggesting that ECM-replacement constructs that mirror developing tissues may promote better regeneration than those modeled on adult tissues. This work investigated the effectiveness of a method of viewing the extracellular matrix of developing …


A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus Aug 2015

A Novel Synthetic Yeast For Enzymatic Biodigester Pretreatment, Tianyu Tan, Mark S. Aronson, Arren Liu, Jill H. Osterhus, Melissa Robins, Suraj Mohan, Erich Leazer, Bowman Clark, Alexa Petrucciani, Katherine Lowery, James Welch, Casey Martin, Helena Lysandrou, Michael E. Scharf, Jenna Rickus

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lignin, a complex organic polymer, is a major roadblock to the efficiency of biofuel conversion as it both physically blocks carbohydrate substrates and poisons biomass degrading enzymes, even if broken down to monomer units. A pretreatment process is often applied to separate the lignin from biomass prior to biofuel conversion. However, contemporary methods of pretreatment require large amounts of energy, which may be economically uncompelling or unfeasible. Taking inspiration from several genes that have been isolated from termites and fungi which translate to enzymes that degrade lignin, we want to establish a novel “enzymatic pretreatment” system where microbes secrete these …