Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Archaeal Nucleosome Positioning In Vivo And In Vitro Is Directed By Primary Sequence Motifs, Narasimharao Nalabothula, Liqun Xi, Sucharita Bhattacharyya, Jonathan Widom, Ji-Ping Wang, John N. Reeve, Thomas J. Santangelo, Yvonne N. Fondufe-Mittendorf Jun 2013

Archaeal Nucleosome Positioning In Vivo And In Vitro Is Directed By Primary Sequence Motifs, Narasimharao Nalabothula, Liqun Xi, Sucharita Bhattacharyya, Jonathan Widom, Ji-Ping Wang, John N. Reeve, Thomas J. Santangelo, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Background: Histone wrapping of DNA into nucleosomes almost certainly evolved in the Archaea, and predates Eukaryotes. In Eukaryotes, nucleosome positioning plays a central role in regulating gene expression and is directed by primary sequence motifs that together form a nucleosome positioning code. The experiments reported were undertaken to determine if archaeal histone assembly conforms to the nucleosome positioning code.

Results: Eukaryotic nucleosome positioning is favored and directed by phased helical repeats of AA/TT/AT/TA and CC/GG/CG/GC dinucleotides, and disfavored by longer AT-rich oligonucleotides. Deep sequencing of genomic DNA protected from micrococcal nuclease digestion by assembly into archaeal nucleosomes has established that …


Thermodynamics Of Binding By Calmodulin Correlates With Target Peptide Α-Helical Propensity, Tori B. Dunlap, Jessime M. Kirk, Emily A. Pena, Meghan S. Yoder, Trevor P. Creamer Apr 2013

Thermodynamics Of Binding By Calmodulin Correlates With Target Peptide Α-Helical Propensity, Tori B. Dunlap, Jessime M. Kirk, Emily A. Pena, Meghan S. Yoder, Trevor P. Creamer

Center for Structural Biology Faculty Publications

In this work, we have examined contributions to the thermodynamics of calmodulin (CaM) binding from the intrinsic propensity for target peptides to adopt an α-helical conformation. CaM target sequences are thought to commonly reside in disordered regions within proteins. Using the ability of TFE to induce α-helical structure as a proxy, the six peptides studied range from having almost no propensity to adopt α-helical structure through to a very high propensity. This despite all six peptides having similar CaM-binding affinities. Our data indicate there is some correlation between the deduced propensities and the thermodynamics of CaM binding. This finding implies …


Pyrvinium Pamoate Changes Alternative Splicing Of The Serotonin Receptor 2c By Influencing Its Rna Structure, Manli Shen, Stanislav Bellaousov, Michael Hiller, Pierre De La Grange, Trevor O. Creamer, Orit Malina, Ruth Sperling, David H. Mathews, Peter Stoilov, Stefan Stamm Feb 2013

Pyrvinium Pamoate Changes Alternative Splicing Of The Serotonin Receptor 2c By Influencing Its Rna Structure, Manli Shen, Stanislav Bellaousov, Michael Hiller, Pierre De La Grange, Trevor O. Creamer, Orit Malina, Ruth Sperling, David H. Mathews, Peter Stoilov, Stefan Stamm

Molecular and Cellular Biochemistry Faculty Publications

The serotonin receptor 2C plays a central role in mood and appetite control. It undergoes pre-mRNA editing as well as alternative splicing. The RNA editing suggests that the pre-mRNA forms a stable secondary structure in vivo. To identify substances that promote alternative exons inclusion, we set up a high-throughput screen and identified pyrvinium pamoate as a drug-promoting exon inclusion without editing. Circular dichroism spectroscopy indicates that pyrvinium pamoate binds directly to the pre-mRNA and changes its structure. SHAPE (selective 2'-hydroxyl acylation analysed by primer extension) assays show that part of the regulated 5'-splice site forms intramolecular base pairs that …


Assembly Of The Type Ii Secretion System Such As Found In Vibrio Cholerae Depends On The Novel Pilotin Asps, Rhys A. Dunstan, Eva Heinz, Lakshmi C. Wijeyewickrema, Robert N. Pike, Anthony W. Purcell, Timothy J. Evans, Judyta Praszkier, Roy M. Robins-Browne, Richard A. Strugnell, Konstantin V. Korotkov, Trevor Lithgow Jan 2013

Assembly Of The Type Ii Secretion System Such As Found In Vibrio Cholerae Depends On The Novel Pilotin Asps, Rhys A. Dunstan, Eva Heinz, Lakshmi C. Wijeyewickrema, Robert N. Pike, Anthony W. Purcell, Timothy J. Evans, Judyta Praszkier, Roy M. Robins-Browne, Richard A. Strugnell, Konstantin V. Korotkov, Trevor Lithgow

Molecular and Cellular Biochemistry Faculty Publications

The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of …