Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Computational Genetic Neuroanatomy Of The Developing Mouse Brain: Dimensionality Reduction, Visualization, And Clustering, Shuiwang Ji Jan 2013

Computational Genetic Neuroanatomy Of The Developing Mouse Brain: Dimensionality Reduction, Visualization, And Clustering, Shuiwang Ji

Computer Science Faculty Publications

Background: The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development.

Results: In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in …


A Mesh Generation And Machine Learning Framework For Drosophila Gene Expression Pattern Image Analysis, Wenlu Zhang, Daming Feng, Rongjian Li, Andrey Chernikov, Nikos Chrisochoides, Christopher Osgood, Charlotte Konikoff, Stuart Newfeld, Sudhir Kumar, Shuiwang Ji Jan 2013

A Mesh Generation And Machine Learning Framework For Drosophila Gene Expression Pattern Image Analysis, Wenlu Zhang, Daming Feng, Rongjian Li, Andrey Chernikov, Nikos Chrisochoides, Christopher Osgood, Charlotte Konikoff, Stuart Newfeld, Sudhir Kumar, Shuiwang Ji

Computer Science Faculty Publications

Background: Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide …


Image-Level And Group-Level Models For Drosophila Gene Expression Pattern Annotation, Quian Sun, Sherin Muckatira, Lei Yuan, Shuiwang Ji, Stuart Newfeld, Sudhir Kumar, Jieping Ye Jan 2013

Image-Level And Group-Level Models For Drosophila Gene Expression Pattern Annotation, Quian Sun, Sherin Muckatira, Lei Yuan, Shuiwang Ji, Stuart Newfeld, Sudhir Kumar, Jieping Ye

Computer Science Faculty Publications

Background: Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment …