Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Characterizing The Behavior Of Mutated Proteins With Emcap: The Energy Minimization Curve Analysis Pipeline, Matthew Lee, Bodi Van Roy, Filip Jagodzinski Oct 2020

Characterizing The Behavior Of Mutated Proteins With Emcap: The Energy Minimization Curve Analysis Pipeline, Matthew Lee, Bodi Van Roy, Filip Jagodzinski

WWU Honors College Senior Projects

Studies of protein mutants in wet laboratory experiments are expensive and time consuming. Computational experiments that simulate the motions of protein with amino acid substitutions can complement wet lab experiments for studying the effects of mutations. In this work we present a computational pipeline that performs exhaustive single-point amino acid substitutions in silico. We perform energy minimization as part of molecular dynamics (MD) of our generated mutant proteins, and the wild type, and log the energy potentials for each step of the simulations. We motivate several metrics that rely on the energy minimization curves of the wild type and mutant, …


A Highly Elastic And Fatigue-Resistant Natural Protein-Reinforced Hydrogel Electrolyte For Reversible-Compressible Quasi-Solid-State Supercapacitors, Jingya Nan, Gaitong Zhang, Tianyu Zhu, Zhongkai Wang, Lijun Wang, Hongsheng Wang, Fuxiang Chu, Chunpeng Wang, Chuanbing Tang Jun 2020

A Highly Elastic And Fatigue-Resistant Natural Protein-Reinforced Hydrogel Electrolyte For Reversible-Compressible Quasi-Solid-State Supercapacitors, Jingya Nan, Gaitong Zhang, Tianyu Zhu, Zhongkai Wang, Lijun Wang, Hongsheng Wang, Fuxiang Chu, Chunpeng Wang, Chuanbing Tang

Faculty Publications

Compressible solid-state supercapacitors are emerging as promising power sources for next-generation flexible electronics with enhanced safety and mechanical integrity. Highly elastic and compressible solid electrolytes are in great demand to achieve reversible compressibility and excellent capacitive stability of these supercapacitor devices. Here, a lithium ion-conducting hydrogel electrolyte by integrating natural protein nanoparticles into polyacrylamide network is reported. Due to the synergistic effect of natural protein nanoparticles and polyacrylamide chains, the obtained hydrogel shows remarkable elasticity, high compressibility, and fatigue resistance properties. More significantly, the supercapacitor device based on this hydrogel electrolyte exhibits reversible compressibility under multiple cyclic compressions, working well …


Legume Genetics And Biology: From Mendel’S Pea To Legume Genomics, Petr Smýkal, Eric J.B. Von Wettberg, Kevin Mcphee May 2020

Legume Genetics And Biology: From Mendel’S Pea To Legume Genomics, Petr Smýkal, Eric J.B. Von Wettberg, Kevin Mcphee

College of Agriculture and Life Sciences Faculty Publications

Legumes have played an important part in cropping systems since the dawn of agriculture, both as human food and as animal feed. The legume family is arguably one of the most abundantly domesticated crop plant families. Their ability to symbiotically fix nitrogen and improve soil fertility has been rewarded since antiquity and makes them a key protein source. The pea was the original model organism used in Mendel’s discovery of the laws of inheritance, making it the foundation of modern plant genetics. This Special Issue provides up-to-date information on legume biology, genetic advances, and the legacy of Mendel.


Methylation Of Salmonella Typhimurium Flagella Promotes Bacterial Adhesion And Host Cell Invasion, Julia A Horstmann, Michele Lunelli, Hélène Cazzola, Johannes Heidemann, Caroline Kühne, Pascal Steffen, Sandra Szefs, Claire Rossi, Ravi K Lokareddy, Chu Wang, Laurine Lemaire, Kelly T Hughes, Charlotte Uetrecht, Hartmut Schlüter, Guntram A Grassl, Theresia E B Stradal, Yannick Rossez, Michael Kolbe, Marc Erhardt Apr 2020

Methylation Of Salmonella Typhimurium Flagella Promotes Bacterial Adhesion And Host Cell Invasion, Julia A Horstmann, Michele Lunelli, Hélène Cazzola, Johannes Heidemann, Caroline Kühne, Pascal Steffen, Sandra Szefs, Claire Rossi, Ravi K Lokareddy, Chu Wang, Laurine Lemaire, Kelly T Hughes, Charlotte Uetrecht, Hartmut Schlüter, Guntram A Grassl, Theresia E B Stradal, Yannick Rossez, Michael Kolbe, Marc Erhardt

Department of Biochemistry and Molecular Biology Faculty Papers

The long external filament of bacterial flagella is composed of several thousand copies of a single protein, flagellin. Here, we explore the role played by lysine methylation of flagellin in Salmonella, which requires the methylase FliB. We show that both flagellins of Salmonella enterica serovar Typhimurium, FliC and FljB, are methylated at surface-exposed lysine residues by FliB. A Salmonella Typhimurium mutant deficient in flagellin methylation is outcompeted for gut colonization in a gastroenteritis mouse model, and methylation of flagellin promotes bacterial invasion of epithelial cells in vitro. Lysine methylation increases the surface hydrophobicity of flagellin, and enhances flagella-dependent adhesion of …


Protein Footprinting: Auxiliary Engine To Power The Structural Biology Revolution, Mark R. Chance, Erik R. Farquhar, Sichun Yang, David T. Lodowski, Janna G. Kiselar Apr 2020

Protein Footprinting: Auxiliary Engine To Power The Structural Biology Revolution, Mark R. Chance, Erik R. Farquhar, Sichun Yang, David T. Lodowski, Janna G. Kiselar

Faculty Scholarship

Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins are determined regularly. These advances have been driven by over fifteen years of technology advancements, first in macromolecular crystallography, and recently in Cryo-electron microscopy. These structures are allowing detailed questions about functional mechanisms of the structures, and the biology enabled by these structures, to be addressed for the first time. At the same time, mass spectrometry technologies for protein structure analysis, “footprinting” studies, have improved their sensitivity and resolution dramatically and can provide detailed sub-peptide and residue level information for validating structures …


Structural Biology Of The Enterovirus Replication-Linked 5'-Cloverleaf Rna And Associated Virus Proteins, Steven M. Pascal, Ravindranath Garimella, Meghan S. Warden, Komala Ponniah Jan 2020

Structural Biology Of The Enterovirus Replication-Linked 5'-Cloverleaf Rna And Associated Virus Proteins, Steven M. Pascal, Ravindranath Garimella, Meghan S. Warden, Komala Ponniah

Chemistry & Biochemistry Faculty Publications

Although enteroviruses are associated with a wide variety of diseases and conditions, their mode of replication is well conserved. Their genome is carried as a single, positive-sense RNA strand. At the 5′ end of the strand is an approximately 90-nucleotide self-complementary region called the 5′ cloverleaf, or the oriL. This noncoding region serves as a platform upon which host and virus proteins, including the 3B, 3C, and 3D virus proteins, assemble in order to initiate replication of a negative-sense RNA strand. The negative strand in turn serves as a template for synthesis of multiple positive-sense RNA strands. Building on structural …