Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Biochemistry

Biochemistry

Institution
Publication Year
Publication

Articles 31 - 47 of 47

Full-Text Articles in Life Sciences

Frataxin And Mitochondrial Fes Cluster Biogenesis, Timothy L. Stemmler, Emmanuel Lesuisse, Debumar Pain, Andrew Dancis Aug 2010

Frataxin And Mitochondrial Fes Cluster Biogenesis, Timothy L. Stemmler, Emmanuel Lesuisse, Debumar Pain, Andrew Dancis

Biochemistry and Molecular Biology Faculty Publications

Friedreich’s ataxia is an inherited neurodegenerative disease caused by frataxin deficiency. Frataxin is a conserved mitochondrial protein that plays a role in Fe-S cluster assembly in mitochondria. Fe-S clusters are modular cofactors that perform essential functions throughout the cell. They are synthesized by a multi-step and multi-subunit mitochondrial machinery that includes a scaffold protein Isu for assembling a protein bound Fe-S cluster intermediate. Frataxin interacts with Isu, iron, and with the cysteine desulfurase Nfs1 that supplies sulfur, thus placing it at the center of mitochondrial Fe-S cluster biosynthesis.


Oxidation Of Methane By A Biological Dicopper Centre, Ramakrishnan Balasubramanian, Stephen M. Smith, Swati Rawat, Liliya A. Yatsunyk, Timothy L. Stemmler, Amy C. Rosenzweig Apr 2010

Oxidation Of Methane By A Biological Dicopper Centre, Ramakrishnan Balasubramanian, Stephen M. Smith, Swati Rawat, Liliya A. Yatsunyk, Timothy L. Stemmler, Amy C. Rosenzweig

Biochemistry and Molecular Biology Faculty Publications

Vast world reserves of methane gas are underutilized as a feedstock for the production of liquid fuels and chemicals owing to the lack of economical and sustainable strategies for the selective oxidation of methane to methanol1. Current processes to activate the strong C–H bond (104 kcal mol−1) in methane require high temperatures, are costly and inefficient, and produce waste2. In nature, methanotrophic bacteria perform this reaction under ambient conditions using metalloenzymes called methane monooxygenases (MMOs). MMOs thus provide the optimal model for an efficient, environmentally sound catalyst3. There are two types of MMO. Soluble MMO (sMMO),expressed by several strains of …


Nmr Assignments Of A Stable Processing Intermediate Of Human Frataxin, Kalyan C. Kondapalli, Krisztina Z. Bencze, Eric Dizin, James A. Cowan, Timothy L. Stemmler Jan 2010

Nmr Assignments Of A Stable Processing Intermediate Of Human Frataxin, Kalyan C. Kondapalli, Krisztina Z. Bencze, Eric Dizin, James A. Cowan, Timothy L. Stemmler

Biochemistry and Molecular Biology Faculty Publications

Frataxin, a nuclear encoded protein targeted to the mitochondrial matrix, has recently been implicated as an iron chaperone that delivers ferrous iron to the iron-sulfur assembly enzyme IscU. During transport across the mitochondrial membrane, the N-terminal mitochondrial targeting sequence of frataxin is cleaved in a two-step process to produce the mature protein found in the matrix, however N-terminal extended forms of the protein have also been observed in vivo. The recent structural characterization studies of the human frataxin ortholog were performed on a truncated variant of the protein. Here we report the NMR spectral assignment of an extended form of …


Self-Assembly And Disassembly Of The Snare Complex: Examined Using Circular Dichroism And Atomic Force Microscopy, Jeremy D. Cook, Won Jin Cho, Timothy L. Stemmler, Bhanu P. Jena Sep 2009

Self-Assembly And Disassembly Of The Snare Complex: Examined Using Circular Dichroism And Atomic Force Microscopy, Jeremy D. Cook, Won Jin Cho, Timothy L. Stemmler, Bhanu P. Jena

Biochemistry and Molecular Biology Faculty Publications

In this study, we report for the first time that both t-SNAREs and v-SNARE and their complexes in buffered suspension, exhibit defined peaks at CD signals of 208 and 222 nm wavelengths, consistent with a higher degree of helical secondary structure. Surprisingly, when incorporated in lipid membrane, both SNAREs and their complexes exhibit reduced folding. In presence of NSF-ATP, the SNARE complex disassembles, as reflected from the CD signals demonstrating elimination of α-helices within the structure.


Structure And Dynamics Of Metalloproteins In Live Cells, Jeremy D. Cook, James E. Penner-Hahn, Timothy L. Stemmler Dec 2008

Structure And Dynamics Of Metalloproteins In Live Cells, Jeremy D. Cook, James E. Penner-Hahn, Timothy L. Stemmler

Biochemistry and Molecular Biology Faculty Publications

X-ray absorption spectroscopy (XAS) has emerged as one of the premier tools for investigating the structure and dynamic properties of metals in cells and in metal containing biomolecules. Utilizing the high flux and broad energy range of X-rays supplied by synchrotron light sources, one can selectively excite core electronic transitions in each metal. Spectroscopic signals from these electronic transitions can be used to dissect the chemical architecture of metals in cells, in cellular components and in biomolecules at varying degrees of structural resolution. With the development of ever-brighter X-ray sources, X-ray methods have grown into applications that can be utilized …


Evolution Of Metal(Loid) Binding Sites In Transcriptional Regulators, Efrén Ordóñez, Saravanamuthu Thiyagarajan, Jeremy D. Cook, Timothy L. Stemmler, José A. Gil., Luís M. Mateos, Barry P. Rosen Jun 2008

Evolution Of Metal(Loid) Binding Sites In Transcriptional Regulators, Efrén Ordóñez, Saravanamuthu Thiyagarajan, Jeremy D. Cook, Timothy L. Stemmler, José A. Gil., Luís M. Mateos, Barry P. Rosen

Biochemistry and Molecular Biology Faculty Publications

Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II) and Ni(II). These homodimeric repressors bind to DNA in absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the …


A Cytosolic Iron Chaperone That Delivers Iron To Ferritin, Haifeng Shi, Krisztina Z. Bencze, Timothy L. Stemmler, Caroline C. Philpott May 2008

A Cytosolic Iron Chaperone That Delivers Iron To Ferritin, Haifeng Shi, Krisztina Z. Bencze, Timothy L. Stemmler, Caroline C. Philpott

Biochemistry and Molecular Biology Faculty Publications

Ferritins are the main iron storage proteins found in animals, plants and bacteria. The capacity to store iron in ferritin is essential for life in mammals, but the mechanism by which cytosolic iron is delivered to ferritin is unknown. Human ferritins expressed in yeast contain little iron. The human Poly r(C)-Binding Protein 1 (PCBP1) increased the amount of iron loaded into ferritin when expressed in yeast. PCBP1 bound to ferritin in vivo, and bound iron and facilitated iron loading into ferritin in vitro. Depletion of PCBP1 in human cells inhibited ferritin iron loading and increased cytosolic iron pools. Thus, PCBP1 …


Novel Role Of Antioxidant-1 (Atox1) As A Copper-Dependent Transcription Factor Involved In Cell Proliferation, S. Itoh, H. W. Kim, O. Nakagawa, K. Ozumi, Susan M. Lessner, H. Aoki, K. Akram, R. D. Mckinney, M. Ushio-Fukai, T. Fukai Feb 2008

Novel Role Of Antioxidant-1 (Atox1) As A Copper-Dependent Transcription Factor Involved In Cell Proliferation, S. Itoh, H. W. Kim, O. Nakagawa, K. Ozumi, Susan M. Lessner, H. Aoki, K. Akram, R. D. Mckinney, M. Ushio-Fukai, T. Fukai

Faculty Publications

Copper plays a fundamental role in regulating cell growth. Many types of human cancer tissues have higher copper levels than normal tissues. Copper can also induce gene expression. However, transcription factors that mediate copper-induced cell proliferation have not been identified in mammals. Here we show that antioxidant-1 (Atox1), previously appreciated as a copper chaperone, represents a novel copper-dependent transcription factor that mediates copper-induced cell proliferation. Stimulation of mouse embryonic fibroblasts (MEFs) with copper markedly increased cell proliferation, cyclin D1 expression, and entry into S phase, which were completely abolished in Atox1-/- MEFs. Promoter analysis and EMSA revealed that copper …


Characterization And Structure Of A Zn2+ And [2fe-2s]-Containing Copper Chaperone From Archaeoglobus Fulgidus, Matthew H. Sazinsky, Benjamin Lemoine, Maria Orofino, Roman Davydov, Krisztina Z. Bencze, Timothy L. Stemmler, Brian M. Hoffman, José M. Argüello, Amy C. Rosenzweig Jul 2007

Characterization And Structure Of A Zn2+ And [2fe-2s]-Containing Copper Chaperone From Archaeoglobus Fulgidus, Matthew H. Sazinsky, Benjamin Lemoine, Maria Orofino, Roman Davydov, Krisztina Z. Bencze, Timothy L. Stemmler, Brian M. Hoffman, José M. Argüello, Amy C. Rosenzweig

Biochemistry and Molecular Biology Faculty Publications

Bacterial CopZ proteins deliver copper to P1B-type Cu+-ATPases that are homologous to the human Wilson and Menkes disease proteins. The genome of the hyperthermophile Archaeoglobus fulgidus encodes a putative CopZ copper chaperone that contains an unusual cysteine rich N-terminal domain of 130 amino acids in addition to a C-terminal copper-binding domain with a conserved CXXC motif. The N-terminal domain (CopZ-NT) is homologous to proteins found only in extremophiles and is the only such protein that is fused to a copper chaperone. Surprisingly, optical, electron paramagnetic resonance, and X-ray absorption spectroscopic data indicate the presence of a [2Fe-2S] cluster in CopZ-NT. …


Human Frataxin: Iron And Ferrochelatase Binding Surface, Krisztina Z. Bencze, Taejin Yoon, CéSar MilláN-Pacheco, Patrick B. Bradley, Nina Pastor, J. A. Cowan, Timothy L. Stemmler May 2007

Human Frataxin: Iron And Ferrochelatase Binding Surface, Krisztina Z. Bencze, Taejin Yoon, CéSar MilláN-Pacheco, Patrick B. Bradley, Nina Pastor, J. A. Cowan, Timothy L. Stemmler

Biochemistry and Molecular Biology Faculty Publications

The coordinated iron structure and ferrochelatase binding surface of human frataxin have been characterized to provide insight into the protein’s ability to serve as the iron chaperone during heme biosynthesis.


The Structure And Function Of Frataxin, Krisztina Z. Bencze, Kalyan C. Kondapalli, Jeremy D. Cook, Stephen Mcmahon, César Millán-Pacheco, Nina Pastor, Timothy L. Stemmler Oct 2006

The Structure And Function Of Frataxin, Krisztina Z. Bencze, Kalyan C. Kondapalli, Jeremy D. Cook, Stephen Mcmahon, César Millán-Pacheco, Nina Pastor, Timothy L. Stemmler

Biochemistry and Molecular Biology Faculty Publications

Frataxin, a highly conserved protein found in prokaryotes and eukaryotes, is required for efficient regulation of cellular iron homeostasis. Humans with a frataxin deficiency have the cardio- and neurodegenerative disorder Friedreich’s ataxia, commonly resulting from a GAA trinucleotide repeat expansion in the frataxin gene. While frataxin’s specific function remains a point of controversy, a general consensus is the protein assists in controlling cellular iron homeostasis by directly binding iron. This review focuses on the structural and biochemical aspects of iron binding by the frataxin orthologs and outlines molecular attributes that may help explain the protein’s role in different cellular pathways.


Three-Dimensional Structure Of The Bacterial Cell Wall Peptidoglycan, Samy O. Meroueh, Krisztina Z. Bencze, Dusan Hesek, Mijoon Lee, Timothy L. Stemmler, Shahriar Mobashery Mar 2006

Three-Dimensional Structure Of The Bacterial Cell Wall Peptidoglycan, Samy O. Meroueh, Krisztina Z. Bencze, Dusan Hesek, Mijoon Lee, Timothy L. Stemmler, Shahriar Mobashery

Biochemistry and Molecular Biology Faculty Publications

The 3D structure of the bacterial peptidoglycan, the major constit- uent of the cell wall, is one of the most important, yet still unsolved, structural problems in biochemistry. The peptidoglycan comprises alternating N-acetylglucosamine (NAG) and N-acetylmu- ramic disaccharide (NAM) saccharides, the latter of which has a peptide stem. Adjacent peptide stems are cross-linked by the transpeptidase enzymes of cell wall biosynthesis to provide the cell wall polymer with the structural integrity required by the bacte- rium. The cell wall and its biosynthetic enzymes are targets of antibiotics. The 3D structure of the cell wall has been elusive because of its …


The Importance Of A Critical Protonation State And The Fate Of The Catalytic Steps In Class A Β-Lactamases And Penicillin-Binding Proteins, Dasantila Golemi-Kotra, Samy O. Meroueh, Choonkeun Kim, Sergei B. Vakulenko, Alexey Bulychev, Ann J. Stemmler, Timothy L. Stemmler, Shahriar Mobashery May 2004

The Importance Of A Critical Protonation State And The Fate Of The Catalytic Steps In Class A Β-Lactamases And Penicillin-Binding Proteins, Dasantila Golemi-Kotra, Samy O. Meroueh, Choonkeun Kim, Sergei B. Vakulenko, Alexey Bulychev, Ann J. Stemmler, Timothy L. Stemmler, Shahriar Mobashery

Biochemistry and Molecular Biology Faculty Publications

b-Lactamases and penicillin-binding proteins are bacterial enzymes involved in antibiotic resistance to b-lactam antibiotics and biosynthetic assembly of cell wall, respectively. Members of these large families of enzymes all experience acylation by their respective substrates at an active-site serine as the first step in their catalytic activities. A Ser-X-X-Lys sequence motif is seen in all these proteins and crystal structures demonstrate that the side chain functions of the serine and lysine are in contact with one another. Three independent methods were used in this report to address the question of the protonation state of this important lysine (Lys73) in the …


Core Concepts In Biochemistry And Molecular Biology In An Integrated Mbbs Curriculum, M P. Iqbal Apr 2004

Core Concepts In Biochemistry And Molecular Biology In An Integrated Mbbs Curriculum, M P. Iqbal

Department of Biological & Biomedical Sciences

No abstract provided.


Development Of A Gene Transfer System In Clostridium Scindens Vpi 12708, Rashmi Ramasubbaiah Jan 2004

Development Of A Gene Transfer System In Clostridium Scindens Vpi 12708, Rashmi Ramasubbaiah

Masters Theses & Specialist Projects

Clostridium scindens VPI 12708 (previously known as Eubacterium sp. VPI 12708) is a bile-acid dehydroxylating bacterium originally isolated from the feces of a colon cancer patient. Many genes required for bile acid 7-a dehydroxylation are found on a large bile acid inducible operon (bai) that has been extensively studied. However the bai promoter, which directs expression of the bai operon, has yet to be characterized due, in part, to a lack of a functional genetic transfer system for this strain. A spontaneous rifampinresistant Clostridium scindens VPI 12708 mutant was used as a recipient to determine the efficacy of conjugation as …


Purified Particulate Methane Monooxygenase From Methylococcus Capsulatus (Bath) Is A Dimer With Both Mononuclear Copper And A Copper-Containing Cluster, Raquel L. Lieberman, Deepak B. Shrestha, Peter E. Doan, Brian M. Hoffman, Timothy L. Stemmler, Amy C. Rosenzweig Mar 2003

Purified Particulate Methane Monooxygenase From Methylococcus Capsulatus (Bath) Is A Dimer With Both Mononuclear Copper And A Copper-Containing Cluster, Raquel L. Lieberman, Deepak B. Shrestha, Peter E. Doan, Brian M. Hoffman, Timothy L. Stemmler, Amy C. Rosenzweig

Biochemistry and Molecular Biology Faculty Publications

Particulate methane monooxygenase (pMMO) is a membrane-bound enzyme that catalyzes the oxidation of methane to methanol in methanotropic bacteria. Understanding how this enzyme hydroxylates methane at ambient temperature and pressure is of fundamental chemical and potential commercial importance. Difficulties in solubilizing and purifying active pMMO have led to conflicting reports regarding its biochemical and biophysical properties, however. We have purified pMMO from Methylococcus capsulatus (Bath) and detected activity. The purified enzyme has a molecular mass of ~200 kDa, probably corresponding to an a2b2g2 polypeptide arrangement. Each 200 kDa pMMO complex contains 4.8 ± 0.8 copper ions and 1.5 ± 0.7 …


Effect Of Fluoroacetate On Amino Acid Metabolism / W. J. Nicklas, D. D. Clarke, And S. Berl. Chem. Dept., Fordham Univ., And Col. Of Physicians And Surgeons, Columbia Univ., New York, N. Y., William J. Nicklas, Donald Dudley Clarke Phd, Soll Berl Jan 1968

Effect Of Fluoroacetate On Amino Acid Metabolism / W. J. Nicklas, D. D. Clarke, And S. Berl. Chem. Dept., Fordham Univ., And Col. Of Physicians And Surgeons, Columbia Univ., New York, N. Y., William J. Nicklas, Donald Dudley Clarke Phd, Soll Berl

Chemistry Faculty Publications

Guinea pig brain cortex slices incubated in media containing U-14-aspartate or glutamate (GA) (J. Neurochem. in press) form glutamine ( GM) of relative specific activity (RSA)> 1 (GA=l). In the presence of 10-3 fluoroacetate (FA) the RSA of GM decreased to values considerably < 1 without any changes in levels of amjno acids; the % of label in GA doubled whilA that in GM decreased correspondingly. Similar results were obtained with 1-14 C-acetate as tracer in vivo (mice) and in vitro. RSA' s of Grvl > 1 have been explained by the compartmentation of GA in cerebral cortex. Consequently the effect of GA may be explained by an inhibition of the flow of metabolites through that pool of GA used preferentially for GM synthesis. This is consistent with the concept of the existence, in brain, of more than one citric acid cycle, one …