Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Protonic Capacitor: Elucidating The Biological Significance Of Mitochondrial Cristae Formation, James Weifu Lee Jun 2020

Protonic Capacitor: Elucidating The Biological Significance Of Mitochondrial Cristae Formation, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

For decades, it was not entirely clear why mitochondria develop cristae? The work employing the transmembrane-electrostatic proton localization theory reported here has now provided a clear answer to this fundamental question. Surprisingly, the transmembrane-electrostatically localized proton concentration at a curved mitochondrial crista tip can be significantly higher than that at the relatively flat membrane plane regions where the proton-pumping respiratory supercomplexes are situated. The biological significance for mitochondrial cristae has now, for the first time, been elucidated at a protonic bioenergetics level: 1) The formation of cristae creates more mitochondrial inner membrane surface area and thus more protonic capacitance for …


Electrostatically Localized Proton Bioenergetics: Better Understanding Membrane Potential, James Weifu Lee Jul 2019

Electrostatically Localized Proton Bioenergetics: Better Understanding Membrane Potential, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

In Mitchell's chemiosmotic theory, membrane potential Δψ was given as the electric potential difference across the membrane. However, its physical origin for membrane potential Δψ was not well explained. Using the Lee proton electrostatic localization model with a newly formulated equation for protonic motive force (pmf) that takes electrostatically localized protons into account, membrane potential has now been better understood as the voltage difference contributed by the localized surface charge density ([H-+L] + nΣ i=1 [M(i+)L]) at the liquid-membrane interface as in an electrostatically localized protons/cations-membrane-anions capacitor. That is, the origin of membrane …