Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 49

Full-Text Articles in Life Sciences

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He Jun 2022

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He

Biology Faculty Publications

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Cbp60-Db: An Alphafold-Predicted Plant Kingdom-Wide Database Of The Calmodulin-Binding Protein 60 (Cbp60) Protein Family With A Novel Structural Clustering Algorithm, Keaun Amani, Vanessa Shivnauth, Christian Castroverde Jan 2022

Cbp60-Db: An Alphafold-Predicted Plant Kingdom-Wide Database Of The Calmodulin-Binding Protein 60 (Cbp60) Protein Family With A Novel Structural Clustering Algorithm, Keaun Amani, Vanessa Shivnauth, Christian Castroverde

Biology Faculty Publications

Molecular genetic analyses in the model species Arabidopsis thaliana have demonstrated the major roles of different CAM-BINDING PROTEIN 60 (CBP60) proteins in growth, stress signaling, and immune responses. Prominently, CBP60g and SARD1 are paralogous CBP60 transcription factors that regulate numerous components of the immune system, such as cell surface and intracellular immune receptors, MAP kinases, WRKY transcription factors, and biosynthetic enzymes for immunity-activating metabolites salicylic acid (SA) and N-hydroxypipecolic acid (NHP). However, their function, regulation and diversification in most species remain unclear. Here we have created CBP60-DB, a structural and bioinformatic database that comprehensively characterized 1052 CBP60 gene homologs …


Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde Oct 2021

Salicylic Acid: A Key Regulator Of Redox Signalling 1 And Plant Immunity, Mohd Saleem, Qazi Fariddudin, Christian Castroverde

Biology Faculty Publications

In plants, the reactive oxygen species (ROS) formed during normal conditions are essential in regulating several processes, like stomatal physiology, pathogen immunity and developmental signaling. However, biotic and abiotic stresses can cause ROS over-accumulation leading to oxidative stress. Therefore, a suitable equilibrium is vital for redox homeostasis in plants, and there have been major advances in this research arena. Salicylic acid (SA) is known as a chief regulator of ROS; however, the underlying mechanisms remain largely unexplored. SA plays an important role in establishing the hypersensitive response (HR) and systemic acquired resistance (SAR). This is underpinned by a robust and …


Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina Jun 2021

Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina

Biology Faculty Publications

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview …


Diversity And Substrate-Specificity Of Green Algae And Other Micro-Eukaryotes Colonizing Amphibian Clutches In Germany, Revealed By Dna Metabarcoding, Sten Anslan, Maria Sachs, Lois Rancilhac, Henner Brinkmann, Jörn Petersen, Sven Künzel, Anja Schwarz, Hartmut Arndt, Ryan R. Kerney, Miguel Vences May 2021

Diversity And Substrate-Specificity Of Green Algae And Other Micro-Eukaryotes Colonizing Amphibian Clutches In Germany, Revealed By Dna Metabarcoding, Sten Anslan, Maria Sachs, Lois Rancilhac, Henner Brinkmann, Jörn Petersen, Sven Künzel, Anja Schwarz, Hartmut Arndt, Ryan R. Kerney, Miguel Vences

Biology Faculty Publications

Amphibian clutches are colonized by diverse but poorly studied communities of micro-organisms. One of the most noted ones is the unicellular green alga, Oophila amblystomatis, but the occurrence and role of other micro-organisms in the capsular chamber surrounding amphibian clutches have remained largely unstudied. Here, we undertook a multi-marker DNA metabarcoding study to characterize the community of algae and other micro-eukaryotes associated with agile frog (Rana dalmatina) clutches. Samplings were performed at three small ponds in Germany, from four substrates: water, sediment, tree leaves from the bottom of the pond, and R. dalmatina clutches. Sampling substrate strongly …


Toward The Discovery Of Biological Functions Associated With The Mechanosensor Mtl1p Of Saccharomyces Cerevisiae Via Integrative Multi-Omics Analysis, Nelson Martínez-Matías, Nataliya Chorna, Sahily González-Crespo, Lilliam Villanueva, Ingrid Montes-Rodríguez, Loyda M. Melendez-Aponte, Abiel Roche-Lima, Kelvin Carrasquillo-Carrión, Ednalise Santiago-Cartagena, Brian C. Rymond, Mohan Babu, Igor Stagljar, José R. Rodríguez-Medina Apr 2021

Toward The Discovery Of Biological Functions Associated With The Mechanosensor Mtl1p Of Saccharomyces Cerevisiae Via Integrative Multi-Omics Analysis, Nelson Martínez-Matías, Nataliya Chorna, Sahily González-Crespo, Lilliam Villanueva, Ingrid Montes-Rodríguez, Loyda M. Melendez-Aponte, Abiel Roche-Lima, Kelvin Carrasquillo-Carrión, Ednalise Santiago-Cartagena, Brian C. Rymond, Mohan Babu, Igor Stagljar, José R. Rodríguez-Medina

Biology Faculty Publications

Functional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase subunit of trehalose 6-phosphate synthase which suggests that mtl1Δ strains undergo intrinsic activation of a non-lethal heat stress response. Furthermore, quantitative global proteomic analysis conducted on TMT-labeled proteins combined with metabolome analysis revealed that mtl1Δ strains exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased …


The Importance Of Ile716 Toward The Mutagenicity Of 8-Oxo-2’-Deoxyguanosine With Bacillus Fragment Dna Polymerase, Michelle L. Hamm, Anarosa A. Garcia, Rachel Gilbert, Manavi Johri, Miranda Ricart, Samantha L. Sholes, Laura A. Murray-Nerger, Eugene Y. Wu May 2020

The Importance Of Ile716 Toward The Mutagenicity Of 8-Oxo-2’-Deoxyguanosine With Bacillus Fragment Dna Polymerase, Michelle L. Hamm, Anarosa A. Garcia, Rachel Gilbert, Manavi Johri, Miranda Ricart, Samantha L. Sholes, Laura A. Murray-Nerger, Eugene Y. Wu

Biology Faculty Publications

8-oxo-2’-deoxyguanosine (OdG) is a prominent DNA lesion that can direct the incorporation of dCTP or dATP during replication. As the latter reaction can lead to mutation, the ratio of dCTP/dATP incorporation can significantly affect the mutagenic potential of OdG. Previous work with the A-family polymerase BF and seven analogues of OdG identified a major groove amino acid, Ile716, which likely influences the dCTP/dATP incorporation ratio opposite OdG. To further probe the importance of this amino acid, dCTP and dATP incorporations opposite the same seven analogues were tested with two BF mutants, I716M and I716A. Results from these studies support the …


Autophagy Protein Nrbf2 Has Reduced Expression In Alzheimer's Brains And Modulates Memory And Amyloid-Beta Homeostasis In Mice, Veronik Lachance, Qian Wang, Eric Sweet, Insup Choi, Cui-Zan Cai, Xu-Xu Zhuang, Jessica Li Jiang, Robert D. Blitzer, Ozlem Bozdagi-Gunal, Bin Zhang, Jia-Hong Lu, Zhenyu Yue Nov 2019

Autophagy Protein Nrbf2 Has Reduced Expression In Alzheimer's Brains And Modulates Memory And Amyloid-Beta Homeostasis In Mice, Veronik Lachance, Qian Wang, Eric Sweet, Insup Choi, Cui-Zan Cai, Xu-Xu Zhuang, Jessica Li Jiang, Robert D. Blitzer, Ozlem Bozdagi-Gunal, Bin Zhang, Jia-Hong Lu, Zhenyu Yue

Biology Faculty Publications

Background Dysfunctional autophagy is implicated in Alzheimer's Disease (AD) pathogenesis. The alterations in the expression of many autophagy related genes (ATGs) have been reported in AD brains; however, the disparity of the changes confounds the role of autophagy in AD. Methods To further understand the autophagy alteration in AD brains, we analyzed transcriptomic (RNAseq) datasets of several brain regions (BA10, BA22, BA36 and BA44 in 223 patients compared to 59 healthy controls) and measured the expression of 130 ATGs. We used autophagy-deficient mouse models to assess the impact of the identified ATGs depletion on memory, autophagic activity and amyloid-beta (A …


Alternative Nad(P)H Dehydrogenase And Alternative Oxidase: Proposed Physiological Roles In Animals, Allison Mcdonald, Dmytro V. Gospodaryov Mar 2019

Alternative Nad(P)H Dehydrogenase And Alternative Oxidase: Proposed Physiological Roles In Animals, Allison Mcdonald, Dmytro V. Gospodaryov

Biology Faculty Publications

The electron transport systems in mitochondria of many organisms contain alternative respiratory enzymes distinct from those of the canonical respiratory system depicted in textbooks. Two of these enzymes, the alternative NADH dehydrogenase and the alternative oxidase, were of interest to a limited circle of researchers until they were envisioned as gene therapy tools for mitochondrial disease treatment. Recently, these enzymes were discovered in several animals. Here, we analyse the functioning of alternative NADH dehydrogenases and oxidases in different organisms. We propose that both enzymes ensure bioenergetic and metabolic flexibility during environmental transitions or other conditions which may compromise the operation …


Co-Cultures Of Oophila Amblystomatis Between Ambystoma Maculatum And Ambystoma Gracile Hosts Show Host-Symbiont Fidelity, Ryan R. Kerney, Jasper S. Leavitt, Elizabeth M. Hill, Huanjia Zhang, Eunsoo Kim, John Burns Jan 2019

Co-Cultures Of Oophila Amblystomatis Between Ambystoma Maculatum And Ambystoma Gracile Hosts Show Host-Symbiont Fidelity, Ryan R. Kerney, Jasper S. Leavitt, Elizabeth M. Hill, Huanjia Zhang, Eunsoo Kim, John Burns

Biology Faculty Publications

A unique symbiosis occurs between embryos of the spotted salamander (Ambystoma maculatum) and a green alga (Oophila amblystomatis). Unlike most vertebrate host-symbiont relationships, which are ectosymbiotic, A. maculatum exhibits both an ecto- and an endo-symbiosis, where some of the green algal cells living inside egg capsules enter embryonic tissues as well as individual salamander cells. Past research has consistently categorized this symbiosis as a mutualism, making this the first example of a “beneficial” microbe entering vertebrate cells. Another closely related species of salamander, Ambystoma gracile, also harbors beneficial Oophila algae in its egg capsules. However, our …


Some Current Trends And Challenges In Philippine Aquaculture, With An Emphasis On Synergies With Biodiversity Initiatives, Ronald Allan L. Cruz, Vikas Kumar, Janice A. Ragaza Jan 2019

Some Current Trends And Challenges In Philippine Aquaculture, With An Emphasis On Synergies With Biodiversity Initiatives, Ronald Allan L. Cruz, Vikas Kumar, Janice A. Ragaza

Biology Faculty Publications

No abstract provided.


Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong Aug 2017

Differential Uptake Of Gold Nanoparticles By 2 Species Of Tadpole, The Wood Frog (Lithobates Sylvaticus) And The Bullfrog (Lithobates Catesbeianus), Lucas B. Thompson, Gerardo L.F. Carfagno, Kurt Andresen, Andrea J. Sitton, Taylor B. Bury, Laura L. Lee, Kevin T. Lerner, Peter P. Fong

Biology Faculty Publications

Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination > wood frogs alone > bullfrogs in combination …


Probing For Binding Regions Of The Ftsz Protein Surface Through Site-Directed Insertions: Discovery Of Fully Functional Ftsz-Fluorescent Proteins, Desmond A. Moore, Zakiya N. Whatley, Chandra P. Joshi, Masaki Osawa, Harold P. Erickson Jan 2017

Probing For Binding Regions Of The Ftsz Protein Surface Through Site-Directed Insertions: Discovery Of Fully Functional Ftsz-Fluorescent Proteins, Desmond A. Moore, Zakiya N. Whatley, Chandra P. Joshi, Masaki Osawa, Harold P. Erickson

Biology Faculty Publications

FtsZ, a bacterial tubulin homologue, is a cytoskeletal protein that assembles into protofilaments that are one subunit thick. These protofilaments assemble further to form a “Z ring” at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane and also serves as a scaffold to recruit cell wall remodeling proteins for complete cell division in vivo. One model of the Z ring proposes that protofilaments associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of Escherichia coli FtsZ …


Transposon-Mediated Stable Suppression Of Gene Expression In The Developing Chick Retina, Masaru Nakamoto, Chizu Nakamoto Jan 2017

Transposon-Mediated Stable Suppression Of Gene Expression In The Developing Chick Retina, Masaru Nakamoto, Chizu Nakamoto

Biology Faculty Publications

The embryonic chick has long been a favorite model system for in vivo studies of vertebrate development. However, a major technical limitation of the chick embryo has been the lack of efficient loss-of-function approaches for analyses of gene functions. Here, we describe a methodology in which a transgene encoding artificial microRNA sequences is introduced into embryonic chick retinal cells by in ovo electroporation and integrated into the genome using the Tol2 transposon system. We show that this methodology can induce potent and stable suppression of gene expression. This technique therefore provides a rapid and robust loss-of-function approach for studies of …


Population Dynamics And Community Composition Of Ammonia Oxidizers In Salt Marshes After The Deepwater Horizon Oil Spill, Anne E. Bernhard, Roberta Sheffer, Anne E. Giblin, John M. Marton, Brian J. Roberts Jun 2016

Population Dynamics And Community Composition Of Ammonia Oxidizers In Salt Marshes After The Deepwater Horizon Oil Spill, Anne E. Bernhard, Roberta Sheffer, Anne E. Giblin, John M. Marton, Brian J. Roberts

Biology Faculty Publications

The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted by the Deepwater Horizon oil spill. Soils were collected at oiled and unoiled sites from Louisiana coastal marshes in July 2012, 2 years after the spill, and analyzed for community differences based on ammonia monooxygenase genes (amoA). Terminal Restriction Fragment …


Novel Interactome Of Saccharomyces Cerevisiae Myosin Type Ii Identified By A Modified Integrated Membrane Yeast Two-Hybrid (Imyth) Screen, Ednalise Santiago, Pearl Akamine, Jamie Snider, Victoria Wong, Matthew Jessulat, Viktor Deineko, Alla Gagarinova, Hiroyuki Aoki, Zoran Minic, Sadhna Phanse, Andrea San Antonio, Luis A Cubano, Brian C. Rymond, Mohan Babu, Igor Stagljar, Jose R. Rodriguez-Medina May 2016

Novel Interactome Of Saccharomyces Cerevisiae Myosin Type Ii Identified By A Modified Integrated Membrane Yeast Two-Hybrid (Imyth) Screen, Ednalise Santiago, Pearl Akamine, Jamie Snider, Victoria Wong, Matthew Jessulat, Viktor Deineko, Alla Gagarinova, Hiroyuki Aoki, Zoran Minic, Sadhna Phanse, Andrea San Antonio, Luis A Cubano, Brian C. Rymond, Mohan Babu, Igor Stagljar, Jose R. Rodriguez-Medina

Biology Faculty Publications

Nonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae. Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization. The identification of new Myo1p-interacting proteins may shed light on the other …


Analogous Cellular Contribution And Healing Mechanisms Following Digit Amputation And Phalangeal Fracture In Mice, Lindsay A. Dawson, Jennifer Simkin, Michelle Sauque, Maegan Pela, Teresa Palkowski, Ken Muneoka Feb 2016

Analogous Cellular Contribution And Healing Mechanisms Following Digit Amputation And Phalangeal Fracture In Mice, Lindsay A. Dawson, Jennifer Simkin, Michelle Sauque, Maegan Pela, Teresa Palkowski, Ken Muneoka

Biology Faculty Publications

Regeneration of amputated structures is severely limited in humans and mice, with complete regeneration restricted to the distal portion of the terminal phalanx (P3). Here, we investigate the dynamic tissue repair response of the second phalangeal element (P2) post amputation in the adult mouse, and show that the repair response of the amputated bone is similar to the proximal P2 bone fragment in fracture healing. The regeneration-incompetent P2 amputation response is characterized by periosteal endochondral ossification resulting in the deposition of new trabecular bone, corresponding to a significant increase in bone volume; however, this response is not associated with bone …


Long-Term Impacts Of Disturbance On Nitrogen-Cycling Bacteria In A New England Salt Marsh, Anne E. Bernhard, Courtney Dwyer, Adrian Idrizi, Geoffrey Bender, Rachel Zwick Feb 2015

Long-Term Impacts Of Disturbance On Nitrogen-Cycling Bacteria In A New England Salt Marsh, Anne E. Bernhard, Courtney Dwyer, Adrian Idrizi, Geoffrey Bender, Rachel Zwick

Biology Faculty Publications

Recent studies on the impacts of disturbance on microbial communities indicate communities show differential responses to disturbance, yet our understanding of how different microbial communities may respond to and recover from disturbance is still rudimentary. We investigated impacts of tidal restriction followed by tidal restoration on abundance and diversity of denitrifying bacteria, ammonia-oxidizing bacteria (AOB), and ammonia-oxidizing archaea (AOA) in New England salt marshes by analyzing nirS and bacterial and archaeal amoA genes, respectively. TRFLP analysis of nirS and betaproteobacterial amoA genes revealed significant differences between restored and undisturbed marshes, with the greatest differences detected in …


Homeotic Gene Teashirt (Tsh) Has A Neuroprotective Function In Amyloid-Beta 42 Mediated Neurodegeneration, Michael T. Moran, Meghana Tare, Madhuri Kango-Singh, Amit Singh Nov 2013

Homeotic Gene Teashirt (Tsh) Has A Neuroprotective Function In Amyloid-Beta 42 Mediated Neurodegeneration, Michael T. Moran, Meghana Tare, Madhuri Kango-Singh, Amit Singh

Biology Faculty Publications

Background: Alzheimer's disease (AD) is a debilitating age related progressive neurodegenerative disorder characterized by the loss of cognition, and eventual death of the affected individual. One of the major causes of AD is the accumulation of Amyloid-beta 42 (Aβ42) polypeptides formed by the improper cleavage of amyloid precursor protein (APP) in the brain. These plaques disrupt normal cellular processes through oxidative stress and aberrant signaling resulting in the loss of synaptic activity and death of the neurons. However, the detailed genetic mechanism(s) responsible for this neurodegeneration still remain elusive.

Methodology/Principal Findings: We have generated a transgenic Drosophila eye model where …


Germline Transgenic Methods For Tracking Cells And Testing Gene Function During Regeneration In The Axolotl, Shahryar Khattak, Maritta Schuez, Tobias Richter, Dunja Knapp, Saori L. Haigo, Tatiana Sandoval-Guzmán, Kristyna Hradlikova, Annett Duemmler, Ryan R. Kerney, Elly M. Tanaka Jun 2013

Germline Transgenic Methods For Tracking Cells And Testing Gene Function During Regeneration In The Axolotl, Shahryar Khattak, Maritta Schuez, Tobias Richter, Dunja Knapp, Saori L. Haigo, Tatiana Sandoval-Guzmán, Kristyna Hradlikova, Annett Duemmler, Ryan R. Kerney, Elly M. Tanaka

Biology Faculty Publications

The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum(axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly …


Using Rnai In C. Elegans To Demonstrate Gene Knockdown Phenotypes In The Undergraduate Biology Lab Setting, Nicole M. Roy May 2013

Using Rnai In C. Elegans To Demonstrate Gene Knockdown Phenotypes In The Undergraduate Biology Lab Setting, Nicole M. Roy

Biology Faculty Publications

RNA interference (RNAi) is a powerful technology used to knock down genes in basic research and medicine. In 2006 RNAi technology using Caenorhabditis elegans (C. elegans) was awarded the Nobel Prize in medicine and thus students graduating in the biological sciences should have experience with this technology. However, students struggle conceptually with the molecular biology behind the RNAi technology and find the technology difficult to grasp. To this end, we have provided a simple, streamlined and inexpensive RNAi procedure using C. elegans that can be adopted in upper level biology classes. By using an unknown RNAi-producing bacteria, students perform novel …


Differential Responses Of Ammonia-Oxidizing Archaea And Bacteria To Long-Term Fertilization In A New England Salt Marsh., Xuefeng Peng, Erik Yando, Erica Hiildebrand, Courtney Dwyer, Anne Kearney, Alex Waciega, Ivan Valiela, Anne E. Bernhard Jan 2013

Differential Responses Of Ammonia-Oxidizing Archaea And Bacteria To Long-Term Fertilization In A New England Salt Marsh., Xuefeng Peng, Erik Yando, Erica Hiildebrand, Courtney Dwyer, Anne Kearney, Alex Waciega, Ivan Valiela, Anne E. Bernhard

Biology Faculty Publications

Since the discovery of ammonia-oxidizing archaea (AOA), new questions have arisen about population and community dynamics and potential interactions between AOA and ammonia-oxidizing bacteria (AOB). We investigated the effects of long-term fertilization on AOA and AOB in the Great Sippewissett Marsh, Falmouth, MA, USA to address some of these questions. Sediment samples were collected from low and high marsh habitats in July 2009 from replicate plots that received low (LF), high (HF), and extra high (XF) levels of a mixed NPK fertilizer biweekly during the growing season since 1974. Additional untreated plots were included as controls (C). Terminal restriction fragment …


Fret-Based Identification Of Mrnas Undergoing Translation, Benjamin Stevens, Chunlai Chen, Ian Farrell, Haibo Zhang, Jaskiran Kaur, Steven L. Broitman, Zeev Smilansky, Barry S. Cooperman, Yale E. Goldman May 2012

Fret-Based Identification Of Mrnas Undergoing Translation, Benjamin Stevens, Chunlai Chen, Ian Farrell, Haibo Zhang, Jaskiran Kaur, Steven L. Broitman, Zeev Smilansky, Barry S. Cooperman, Yale E. Goldman

Biology Faculty Publications

No abstract provided.


Increased Variability Of Microbial Communities In Restored Salt Marshes Nearly 30 Years After Tidal Flow Restoration, Anne E. Bernhard, David Marshall, Lazaros Yiannos Jan 2012

Increased Variability Of Microbial Communities In Restored Salt Marshes Nearly 30 Years After Tidal Flow Restoration, Anne E. Bernhard, David Marshall, Lazaros Yiannos

Biology Faculty Publications

We analyzed microbial diversity and community composition from four salt marsh sites that were impounded for 40–50 years and subsequently restored and four unimpounded sites in southeastern Connecticut over one growing season. Community composition and diversity were assessed by terminal restriction fragment length polymorphism (TRFLP) and sequence analysis of 16S ribosomal RNA (rRNA) genes. Our results indicated diverse communities, with sequences representing 14 different bacterial divisions. Proteobacteria, Bacteroidetes, and Planctomycetes dominated clone libraries from both restored and unimpounded sites. Multivariate analysis of the TRFLP data suggest significant site, sample date, and restoration status effects, but the exact causes of these …


Interfamily Variation In Amphibian Early Life-History Traits: Raw Material For Natural Selection?, Gareth R. Hopkins, Brian G. Gall, Susannah S. French, Edmund D. Brodie Jr. Jan 2012

Interfamily Variation In Amphibian Early Life-History Traits: Raw Material For Natural Selection?, Gareth R. Hopkins, Brian G. Gall, Susannah S. French, Edmund D. Brodie Jr.

Biology Faculty Publications

The embryonic development and time to hatching of eggs can be highly adaptive in some species, and thus under selective pressure. In this study, we examined the underlying interfamily variation in hatching timing and embryonic development in a population of an oviparous amphibian, the rough-skinned newt (Taricha granulosa). We found significant, high variability in degree of embryonic development and hatching timing among eggs from different females. Patterns of variation were present regardless of temperature.We also could not explain the differences among families by morphological traits of the females or their eggs. This study suggests that the variation necessary for natural …


Dynamic Glucoregulation And Mammalian-Like Responses To Metabolic And Developmental Disruption In Zebrafish, Agata Jurczyk, Nicole M. Roy, Rabia Bajwa, Philipp Gut, Kathryn Lipson, Chaoxing Yang, Laurence Covassin, Waldemar J. Racki, Aldo A. Rossini, Nancy Phillips, Didier Y. R. Stainier, Dale L. Greiner, Michael A. Brehm, Rita Bortell, Philip Diiorio Jan 2011

Dynamic Glucoregulation And Mammalian-Like Responses To Metabolic And Developmental Disruption In Zebrafish, Agata Jurczyk, Nicole M. Roy, Rabia Bajwa, Philipp Gut, Kathryn Lipson, Chaoxing Yang, Laurence Covassin, Waldemar J. Racki, Aldo A. Rossini, Nancy Phillips, Didier Y. R. Stainier, Dale L. Greiner, Michael A. Brehm, Rita Bortell, Philip Diiorio

Biology Faculty Publications

Zebrafish embryos are emerging as models of glucose metabolism. However, patterns of endogenous glucose levels, and the role of the islet in glucoregulation, are unknown. We measured absolute glucose levels in zebrafish and mouse embryos, and demonstrate similar, dynamic glucose fluctuations in both species. Further, we show that chemical and genetic perturbations elicit mammalian-like glycemic responses in zebrafish embryos. We show that glucose is undetectable in early zebrafish and mouse embryos, but increases in parallel with pancreatic islet formation in both species. In zebrafish, increasing glucose is associated with activation of gluconeogenic phosphoenolpyruvate carboxykinase1 (pck1) transcription. Non-hepatic Pck1 protein is …


Estuarine Nitrifiers: New Players, Patterns And Processes, Anne E. Bernhard, Annette Bollmann Jun 2010

Estuarine Nitrifiers: New Players, Patterns And Processes, Anne E. Bernhard, Annette Bollmann

Biology Faculty Publications

Ever since the first descriptions of ammonia-oxidizing Bacteria by Winogradsky in the late 1800s, the metabolic capability of aerobic ammonia oxidation has been restricted to a phylogenetically narrow group of bacteria. However, the recent discovery of ammonia-oxidizing Archaea has forced microbiologists and ecologists to re-evaluate long-held paradigms and the role of niche partitioning between bacterial and archaeal ammonia oxidizers. Much of the current research has been conducted in open ocean or terrestrial systems, where community patterns of archaeal and bacterial ammonia oxidizers are highly congruent. Studies of archaeal and bacterial ammonia oxidizers in estuarine systems, however, present a very different …


Abundance Of Ammonia-Oxidizing Archaea And Bacteria Along An Estuarine Salinity Gradient In Relationship To Potential Nitrification Rates, Anne E. Bernhard, Zachary C. Landry, Alison Blevins, José R. De La Torre, Anne E. Giblin, David A. Stahl Feb 2010

Abundance Of Ammonia-Oxidizing Archaea And Bacteria Along An Estuarine Salinity Gradient In Relationship To Potential Nitrification Rates, Anne E. Bernhard, Zachary C. Landry, Alison Blevins, José R. De La Torre, Anne E. Giblin, David A. Stahl

Biology Faculty Publications

Abundance of ammonia-oxidizing Archaea (AOA) was found to be always greater than that of ammonia-oxidizing Bacteria along an estuarine salinity gradient, and AOA abundance was highest at intermediate salinity. However, AOA abundance did not correlate with potential nitrification rates. This lack of correlation may be due to methodological limitations or alternative energy sources.


Distribution And Diversity Of Archaeal And Bacterial Ammonia Oxidizers In Salt Marsh Sediments, Nicole S. Moin, Katelyn A. Nelson, Alexander Bush, Anne E. Bernhard Dec 2009

Distribution And Diversity Of Archaeal And Bacterial Ammonia Oxidizers In Salt Marsh Sediments, Nicole S. Moin, Katelyn A. Nelson, Alexander Bush, Anne E. Bernhard

Biology Faculty Publications

Diversity and abundance of ammonia-oxidizing Betaproteobacteria (β-AOB) and archaea (AOA) were investigated in a New England salt marsh at sites dominated by short or tall Spartina alterniflora (SAS and SAT sites, respectively) or Spartina patens (SP site). AOA amoA gene richness was higher than β-AOB amoA richness at SAT and SP, but AOA and β-AOB richness were similar at SAS. β-AOB amoA clone libraries were composed exclusively of Nitrosospira-like amoA genes. AOA amoA genes at SAT and SP were equally distributed between the water column/sediment and soil/sediment clades, while AOA amoA sequences at SAS were primarily affiliated with the …