Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Understanding Ocean Acidification Impacts On Organismal To Ecological Scales, Andreas J. Andersson, David I. Kline, Peter J. Edmunds, Stephen D. Archer, Nina Bednarsek, Robert C. Carpenter, Meg Chadsey, Philip Goldstein, Andrea G. Grottoli, Thomas P. Hurst, Andrew L. King, Janet E. Kübler, Ilsa B. Kuffner, Katherine R.M. Mackey, Bruce A. Menge, Adina Paytan, Ulf Riebesell, Astrid Schnetzer, Mark E. Warner, Richard C. Zimmerman Jan 2015

Understanding Ocean Acidification Impacts On Organismal To Ecological Scales, Andreas J. Andersson, David I. Kline, Peter J. Edmunds, Stephen D. Archer, Nina Bednarsek, Robert C. Carpenter, Meg Chadsey, Philip Goldstein, Andrea G. Grottoli, Thomas P. Hurst, Andrew L. King, Janet E. Kübler, Ilsa B. Kuffner, Katherine R.M. Mackey, Bruce A. Menge, Adina Paytan, Ulf Riebesell, Astrid Schnetzer, Mark E. Warner, Richard C. Zimmerman

OES Faculty Publications

Ocean acidification (OA) research seeks to understand how marine ecosystems and global elemental cycles will respond to changes in seawater carbonate chemistry in combination with other environmental perturbations such as warming, eutrophication, and deoxygenation. Here, we discuss the effectiveness and limitations of current research approaches used to address this goal. A diverse combination of approaches is essential to decipher the consequences of OA to marine organisms, communities, and ecosystems. Consequently, the benefits and limitations of each approach must be considered carefully. Major research challenges involve experimentally addressing the effects of OA in the context of large natural variability in seawater …


Iron Deficiency Increases Growth And Nitrogen-Fixation Rates Of Phosphorus-Deficient Marine Cyanobacteria, Nathan S. Garcia, Feixue Fu, Peter N. Sedwick, David A. Hutchins Jan 2015

Iron Deficiency Increases Growth And Nitrogen-Fixation Rates Of Phosphorus-Deficient Marine Cyanobacteria, Nathan S. Garcia, Feixue Fu, Peter N. Sedwick, David A. Hutchins

OES Faculty Publications

Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient …