Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Chesapeake Bay Nitrogen Fluxes Derived From A Land-Estuarine Ocean Biogeochemical Modeling System: Model Description, Evaluation, And Nitrogen Bonds, Yang Feng, Marjorie A.M. Friedrichs, John Wilkin, Hanqin Tian, Qichun Yang, Eileen E. Hofmann Jan 2015

Chesapeake Bay Nitrogen Fluxes Derived From A Land-Estuarine Ocean Biogeochemical Modeling System: Model Description, Evaluation, And Nitrogen Bonds, Yang Feng, Marjorie A.M. Friedrichs, John Wilkin, Hanqin Tian, Qichun Yang, Eileen E. Hofmann

CCPO Publications

The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen …


Divergent Responses Of Atlantic Coastal And Oceanic Synechococcus To Iron Limitation, Katherine R. M. Mackey, Anton F. Post, Matthew R. Mcilvin, Gregory A. Cutter, Seth G. John, Mak A. Saito Jan 2015

Divergent Responses Of Atlantic Coastal And Oceanic Synechococcus To Iron Limitation, Katherine R. M. Mackey, Anton F. Post, Matthew R. Mcilvin, Gregory A. Cutter, Seth G. John, Mak A. Saito

OES Faculty Publications

Marine Synechococcus are some of the most diverse and ubiquitous phytoplankton, and iron (Fe) is an essential micronutrient that limits productivity in many parts of the ocean. To investigate how coastal and oceanic Atlantic Synechococcus strains acclimate to Fe availability, we compared the growth, photophysiology, and quantitative proteomics of two Synechococcus strains from different Fe regimes. Synechococcus strain WH8102, from a region in the southern Sargasso Sea that receives substantial dust deposition, showed impaired growth and photophysiology as Fe declined, yet used few acclimation responses. Coastal WH8020, from the dynamic, seasonally variable New England shelf, displayed a multitiered, hierarchical cascade …


Use Of Esi-Fticr-Ms To Characterize Dissolved Organic Matter In Headwater Streams Draining Forest-Dominated And Pasture-Dominated Watersheds, Yuehan Lu, Xiaping Li, Rajaa Mesfioui, James E. Bauer, R. M. Chambers, Elizabeth A. Canuel, Patrick G. Hatcher Jan 2015

Use Of Esi-Fticr-Ms To Characterize Dissolved Organic Matter In Headwater Streams Draining Forest-Dominated And Pasture-Dominated Watersheds, Yuehan Lu, Xiaping Li, Rajaa Mesfioui, James E. Bauer, R. M. Chambers, Elizabeth A. Canuel, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) has proven to be a powerful technique revealing complexity and diversity of natural DOM molecules, but its application to DOM analysis in grazing-impacted agricultural systems remains scarce. In the present study, we presented a case study of using ESI-FTICR-MS in analyzing DOM from four headwater streams draining forest-or pasture-dominated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds (71.8-87.9%), with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S)) accounting for only minor fractions. All samples were dominated by molecules falling in the lignin-like region (H/C …


Heterotrophic And Autotrophic Contribution To Dinitrogen Fixation In The Gulf Of Aqaba, Eyal Rahav, Barak Herut, Margaret R. Mulholland, Natalia Belkin, Hila Elifantz, Ilana Berman-Frank Jan 2015

Heterotrophic And Autotrophic Contribution To Dinitrogen Fixation In The Gulf Of Aqaba, Eyal Rahav, Barak Herut, Margaret R. Mulholland, Natalia Belkin, Hila Elifantz, Ilana Berman-Frank

OES Faculty Publications

We evaluated the seasonal contribution of heterotrophic and autotrophic diazotrophy to the total dinitrogen (N2) fixation in the photic zone of a pelagic station in the northern Gulf of Aqaba, Red Sea. N2 fixation rates were highest during a Trichodesmium bloom in winter (0.7 nmol N l-1 d-1), decreased 7-fold 1 wk later throughout the upper 200 m (~0.1 nmol N l-1) d-1), and were significantly coupled with both primary and bacterial productivity. N2 fixation rates were generally higher in the upper 200 m (~0.4 nmol N l-1 …


The Relative Importance Of Methanogenesis In The Decomposition Of Organic Matter In Northern Peatlands, J. Elizabeth Corbett, Malak M. Tfaily, David J. Burdige, Paul H. Glaser, Jeffrey P. Chanton Jan 2015

The Relative Importance Of Methanogenesis In The Decomposition Of Organic Matter In Northern Peatlands, J. Elizabeth Corbett, Malak M. Tfaily, David J. Burdige, Paul H. Glaser, Jeffrey P. Chanton

OES Faculty Publications

Using an isotope-mass balance approach and assuming the equimolar production of CO2 and CH4 from methanogenesis (e.g., anaerobic decomposition of cellulose), we calculate that the proportion of total CO2 production from methanogenesis varies from 37 to 83% across a variety of northern peatlands. In a relative sense, methanogenesis was a more important pathway for decomposition in bogs (80 ± 13% of CO2 production) than in fens (64 ± 5.7% of CO2 production), but because fens contain more labile substrates they may support higher CH4 production overall. The concentration of CO2 produced from methanogenesis (CO …


Iron Supply And Demand In Antarctic Shelf Ecosystem, D. J. Mcgillicuddy Jr., Peter N. Sedwick, Michael S. Dinniman, K. R. Arrigo, T. S. Bibby, B. J. W. Greenan, Eileen E. Hofmann, John M. Klinck, W. O. Smith Jr., S. L. Mack, C. M. Marsay, B. M. Sohst, G. L. Van Dijken Jan 2015

Iron Supply And Demand In Antarctic Shelf Ecosystem, D. J. Mcgillicuddy Jr., Peter N. Sedwick, Michael S. Dinniman, K. R. Arrigo, T. S. Bibby, B. J. W. Greenan, Eileen E. Hofmann, John M. Klinck, W. O. Smith Jr., S. L. Mack, C. M. Marsay, B. M. Sohst, G. L. Van Dijken

OES Faculty Publications

The Ross Sea sustains a rich ecosystem and is the most productive sector of the Southern Ocean. Most of this production occurs within a polynya during the November-February period, when the availability of dissolved iron (dFe) is thought to exert the major control on phytoplankton growth. Here we combine new data on the distribution of dFe, high-resolution model simulations of ice melt and regional circulation, and satellite-based estimates of primary production to quantify iron supply and demand over the Ross Sea continental shelf. Our analysis suggests that the largest sources of dFe to the euphotic zone are wintertime mixing and …


Characterization Of Terrestrial Dissolved Organic Matter Fractionated By Ph And Polarity And Their Biological Effects On Plant Growth, Rachel L. Sleighter, Paolo Caricasole, Kristen M. Richards, Terry Hanson, Patrick G. Hatcher Jan 2015

Characterization Of Terrestrial Dissolved Organic Matter Fractionated By Ph And Polarity And Their Biological Effects On Plant Growth, Rachel L. Sleighter, Paolo Caricasole, Kristen M. Richards, Terry Hanson, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

Background: Humic substances are ubiquitous in the environment, complex mixtures, and known to be beneficial to plant growth. To better understand and identify components responsible for plant growth stimulation, a terrestrial aquatic DOM sample was fractionated according to pH and polarity, obtaining acid-soluble and acid-insoluble portions, as well as acid-soluble hydrophobic and hydrophilic fractions using C18. The various fractions were characterized then evaluated for their biological effects on plant growth using bioassays with corn at two carbon rates.

Results: Approximately 43% and 57% of the carbon, and 31% and 69% of the iron, was found in the acid-insoluble and acid-soluble …