Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Effects Of Nanosecond Pulse Electric Fields On Cellular Elasticity, Diganta Dutta, Anthony Asmar, Michael W. Stacey Jan 2015

Effects Of Nanosecond Pulse Electric Fields On Cellular Elasticity, Diganta Dutta, Anthony Asmar, Michael W. Stacey

Bioelectrics Publications

We investigated the effects of a single 60 nanosecond pulsed electric field (nsPEF) of low (15 kV/cm) and high (60 kV/cm) field strengths on cellular morphology and membrane elasticity in Jurkat cells using fluorescent microscopy and atomic force microscopy (AFM). We performed force displacement measurements on cells using AFM and calculated the Young's modulus for membrane elasticity. Differential effects were observed depending upon pulsing conditions. We found that a single nsPEF of low field strength did not induce any apparent cytoskeletal breakdown and had minor morphological changes. Interestingly, force measurements and calculation of Young's modulus showed a significant decrease in …


In Vitro Measurements Of Tracheal Constriction Using Mice, Iurii Semenov, Jeremiah T. Herlihy, Robert Brenner Jan 2012

In Vitro Measurements Of Tracheal Constriction Using Mice, Iurii Semenov, Jeremiah T. Herlihy, Robert Brenner

Bioelectrics Publications

Transgenic and knockout mice have been powerful tools for the investigation of the physiology and pathophysiology of airways(1,2). In vitro tensometry of isolated tracheal preparations has proven to be a useful assay of airway smooth muscle (ASM) contractile response in genetically modified mice. These in vitro tracheal preparations are relatively simple, provide a robust response, and retain both functional cholinergic nerve endings and muscle responses, even after long incubations. Tracheal tensometry also provides a functional assay to study a variety of second messenger signaling pathways that affect contraction of smooth muscle. Contraction in trachea is primarily mediated by parasympathetic, cholinergic …


Nanosecond Pulse Electrical Fields Used In Conjunction With Multi-Wall Carbon Nanotubes As A Potential Tumor Treatment, Michael W. Stacey, Christopher Osgood, Bhargava Subhash Kalluri, Wei Cao, Hani Elsayed-Ali, Tarek Abdel-Fattah Jan 2011

Nanosecond Pulse Electrical Fields Used In Conjunction With Multi-Wall Carbon Nanotubes As A Potential Tumor Treatment, Michael W. Stacey, Christopher Osgood, Bhargava Subhash Kalluri, Wei Cao, Hani Elsayed-Ali, Tarek Abdel-Fattah

Bioelectrics Publications

The objectives of this communication were to fabricate pure samples of multi-walled carbon nanotubes (MWCNTs) and to determine their toxicity in tumor cell lines. MWCNTs were dispersed in a concentration of the surfactant T80 that was minimally toxic. Cell-type variation in toxicity to MWCNTs was observed but was not significantly different to unexposed controls. Additionally, we investigated the increased cell killing of the pancreatic cancer cell line PANC1 when exposed to ultrashort (nanosecond) pulsed electrical fields (nsPEF) in the presence of MWCNTs as a potential form of cancer therapy. We hypothesized that the unique electronic properties of MWCNTs disrupt cell …


Self-Consistent Analyses For Potential Conduction Block In Nerves By An Ultrashort High-Intensity Electric Pulse, R. P. Joshi, A. Mishra, Q. Hu, K. H. Schoenbach, A. Pakhomov Jan 2007

Self-Consistent Analyses For Potential Conduction Block In Nerves By An Ultrashort High-Intensity Electric Pulse, R. P. Joshi, A. Mishra, Q. Hu, K. H. Schoenbach, A. Pakhomov

Bioelectrics Publications

Simulation studies are presented that probe the possibility of using high-field (>100kV ∕ cm), short-duration (∼50ns) electrical pulses for nonthermal and reversible cessation of biological electrical signaling pathways. This would have obvious applications in neurophysiology, clinical research, neuromuscular stimulation therapies, and even nonlethal bioweapons development. The concept is based on the creation of a sufficiently high density of pores on the nerve membrane by an electric pulse. This modulates membrane conductance and presents an effective "electrical short" to an incident voltage wave traveling across a nerve. Net blocking of action potential propagation can then result. A continuum approach based …


Effect Of Electrically Mediated Intratumor And Intramuscular Delivery Of A Plasmid Encoding Ifn Α On Visible B16 Mouse Melanomas, Loree C. Heller, Stephanie F. Ingram, M. Lee Lucas, Richard A. Gilbert, Richard Heller Jun 2002

Effect Of Electrically Mediated Intratumor And Intramuscular Delivery Of A Plasmid Encoding Ifn Α On Visible B16 Mouse Melanomas, Loree C. Heller, Stephanie F. Ingram, M. Lee Lucas, Richard A. Gilbert, Richard Heller

Bioelectrics Publications

Interferon α may be used as a single agent therapy for metastatic malignant melanoma or as an adjuvant to chemotherapy. Delivery of interferon α by gene therapy offers an alternative to recombinant protein therapy. Electrically mediated delivery enhances plasmid expression in a number of tissues, for instance skin, liver, muscle and tumors including melanomas. Here we compare the effect of delivery of a plasmid encoding mouse interferon α on growth of visible B16 mouse melanomas following electrically mediated delivery to muscle or directly to the tumor. Intratumoral delivery of interferon α plasmid not only slows melanoma growth, but induces complete, …